mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-08-07 15:33:29 +08:00
1107 lines
43 KiB
Python
1107 lines
43 KiB
Python
import argparse
|
||
import os,re
|
||
import sys
|
||
|
||
now_dir = os.getcwd()
|
||
sys.path.append(now_dir)
|
||
sys.path.append("%s/GPT_SoVITS" % (now_dir))
|
||
|
||
import signal
|
||
from text.LangSegmenter import LangSegmenter
|
||
from time import time as ttime
|
||
import torch, torchaudio
|
||
import librosa
|
||
import soundfile as sf
|
||
from fastapi import FastAPI, Request, Query, HTTPException
|
||
from fastapi.responses import StreamingResponse, JSONResponse
|
||
import uvicorn
|
||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||
import numpy as np
|
||
from feature_extractor import cnhubert
|
||
from io import BytesIO
|
||
from module.models import SynthesizerTrn, SynthesizerTrnV3
|
||
from peft import LoraConfig, PeftModel, get_peft_model
|
||
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
||
from text import cleaned_text_to_sequence
|
||
from text.cleaner import clean_text
|
||
from module.mel_processing import spectrogram_torch
|
||
from tools.my_utils import load_audio
|
||
import config as global_config
|
||
import logging
|
||
import subprocess
|
||
|
||
import nltk
|
||
nltk.download('averaged_perceptron_tagger_eng')
|
||
|
||
|
||
class DefaultRefer:
|
||
def __init__(self, path, text, language):
|
||
self.path = args.default_refer_path
|
||
self.text = args.default_refer_text
|
||
self.language = args.default_refer_language
|
||
|
||
def is_ready(self) -> bool:
|
||
return is_full(self.path, self.text, self.language)
|
||
|
||
|
||
def is_empty(*items): # 任意一项不为空返回False
|
||
for item in items:
|
||
if item is not None and item != "":
|
||
return False
|
||
return True
|
||
|
||
|
||
def is_full(*items): # 任意一项为空返回False
|
||
for item in items:
|
||
if item is None or item == "":
|
||
return False
|
||
return True
|
||
|
||
|
||
def init_bigvgan():
|
||
global bigvgan_model
|
||
from BigVGAN import bigvgan
|
||
bigvgan_model = bigvgan.BigVGAN.from_pretrained("%s/GPT_SoVITS/pretrained_models/models--nvidia--bigvgan_v2_24khz_100band_256x" % (now_dir,), use_cuda_kernel=False) # if True, RuntimeError: Ninja is required to load C++ extensions
|
||
# remove weight norm in the model and set to eval mode
|
||
bigvgan_model.remove_weight_norm()
|
||
bigvgan_model = bigvgan_model.eval()
|
||
if is_half == True:
|
||
bigvgan_model = bigvgan_model.half().to(device)
|
||
else:
|
||
bigvgan_model = bigvgan_model.to(device)
|
||
|
||
|
||
resample_transform_dict={}
|
||
def resample(audio_tensor, sr0):
|
||
global resample_transform_dict
|
||
if sr0 not in resample_transform_dict:
|
||
resample_transform_dict[sr0] = torchaudio.transforms.Resample(
|
||
sr0, 24000
|
||
).to(device)
|
||
return resample_transform_dict[sr0](audio_tensor)
|
||
|
||
|
||
from module.mel_processing import spectrogram_torch,mel_spectrogram_torch
|
||
spec_min = -12
|
||
spec_max = 2
|
||
def norm_spec(x):
|
||
return (x - spec_min) / (spec_max - spec_min) * 2 - 1
|
||
def denorm_spec(x):
|
||
return (x + 1) / 2 * (spec_max - spec_min) + spec_min
|
||
mel_fn=lambda x: mel_spectrogram_torch(x, **{
|
||
"n_fft": 1024,
|
||
"win_size": 1024,
|
||
"hop_size": 256,
|
||
"num_mels": 100,
|
||
"sampling_rate": 24000,
|
||
"fmin": 0,
|
||
"fmax": None,
|
||
"center": False
|
||
})
|
||
|
||
|
||
sr_model=None
|
||
def audio_sr(audio,sr):
|
||
global sr_model
|
||
if sr_model==None:
|
||
from tools.audio_sr import AP_BWE
|
||
try:
|
||
sr_model=AP_BWE(device,DictToAttrRecursive)
|
||
except FileNotFoundError:
|
||
logger.info("你没有下载超分模型的参数,因此不进行超分。如想超分请先参照教程把文件下载")
|
||
return audio.cpu().detach().numpy(),sr
|
||
return sr_model(audio,sr)
|
||
|
||
|
||
class Speaker:
|
||
def __init__(self, name, gpt, sovits, phones = None, bert = None, prompt = None):
|
||
self.name = name
|
||
self.sovits = sovits
|
||
self.gpt = gpt
|
||
self.phones = phones
|
||
self.bert = bert
|
||
self.prompt = prompt
|
||
|
||
speaker_list = {}
|
||
|
||
|
||
class Sovits:
|
||
def __init__(self, vq_model, hps):
|
||
self.vq_model = vq_model
|
||
self.hps = hps
|
||
|
||
from process_ckpt import get_sovits_version_from_path_fast,load_sovits_new
|
||
def get_sovits_weights(sovits_path):
|
||
path_sovits_v3=sovits_path
|
||
is_exist_s2gv3=os.path.exists(path_sovits_v3)
|
||
|
||
version, model_version, if_lora_v3=get_sovits_version_from_path_fast(sovits_path)
|
||
logger.info(f"tha path {path_sovits_v3}, the version is: {version}, model version: {model_version}, if lora v3: {if_lora_v3}")
|
||
if if_lora_v3==True and is_exist_s2gv3==False:
|
||
logger.info("SoVITS V3 底模缺失,无法加载相应 LoRA 权重")
|
||
|
||
dict_s2 = load_sovits_new(sovits_path)
|
||
hps = dict_s2["config"]
|
||
hps = DictToAttrRecursive(hps)
|
||
hps.model.semantic_frame_rate = "25hz"
|
||
if 'enc_p.text_embedding.weight' not in dict_s2['weight']:
|
||
hps.model.version = "v2"#v3model,v2sybomls
|
||
elif dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322:
|
||
hps.model.version = "v1"
|
||
else:
|
||
hps.model.version = "v2"
|
||
|
||
if model_version == "v3":
|
||
hps.model.version = "v3"
|
||
|
||
model_params_dict = vars(hps.model)
|
||
if model_version!="v3":
|
||
vq_model = SynthesizerTrn(
|
||
hps.data.filter_length // 2 + 1,
|
||
hps.train.segment_size // hps.data.hop_length,
|
||
n_speakers=hps.data.n_speakers,
|
||
**model_params_dict
|
||
)
|
||
else:
|
||
vq_model = SynthesizerTrnV3(
|
||
hps.data.filter_length // 2 + 1,
|
||
hps.train.segment_size // hps.data.hop_length,
|
||
n_speakers=hps.data.n_speakers,
|
||
**model_params_dict
|
||
)
|
||
init_bigvgan()
|
||
model_version=hps.model.version
|
||
logger.info(f"模型版本: {model_version}")
|
||
if ("pretrained" not in sovits_path):
|
||
try:
|
||
del vq_model.enc_q
|
||
except:pass
|
||
if is_half == True:
|
||
vq_model = vq_model.half().to(device)
|
||
else:
|
||
vq_model = vq_model.to(device)
|
||
vq_model.eval()
|
||
if if_lora_v3 == False:
|
||
vq_model.load_state_dict(dict_s2["weight"], strict=False)
|
||
else:
|
||
vq_model.load_state_dict(load_sovits_new(path_sovits_v3)["weight"], strict=False)
|
||
lora_rank=dict_s2["lora_rank"]
|
||
lora_config = LoraConfig(
|
||
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
|
||
r=lora_rank,
|
||
lora_alpha=lora_rank,
|
||
init_lora_weights=True,
|
||
)
|
||
vq_model.cfm = get_peft_model(vq_model.cfm, lora_config)
|
||
vq_model.load_state_dict(dict_s2["weight"], strict=False)
|
||
vq_model.cfm = vq_model.cfm.merge_and_unload()
|
||
# torch.save(vq_model.state_dict(),"merge_win.pth")
|
||
vq_model.eval()
|
||
|
||
sovits = Sovits(vq_model, hps)
|
||
return sovits
|
||
|
||
class Gpt:
|
||
def __init__(self, max_sec, t2s_model):
|
||
self.max_sec = max_sec
|
||
self.t2s_model = t2s_model
|
||
|
||
global hz
|
||
hz = 50
|
||
def get_gpt_weights(gpt_path):
|
||
dict_s1 = torch.load(gpt_path, map_location="cpu")
|
||
config = dict_s1["config"]
|
||
max_sec = config["data"]["max_sec"]
|
||
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
|
||
t2s_model.load_state_dict(dict_s1["weight"])
|
||
if is_half == True:
|
||
t2s_model = t2s_model.half()
|
||
t2s_model = t2s_model.to(device)
|
||
t2s_model.eval()
|
||
# total = sum([param.nelement() for param in t2s_model.parameters()])
|
||
# logger.info("Number of parameter: %.2fM" % (total / 1e6))
|
||
|
||
gpt = Gpt(max_sec, t2s_model)
|
||
return gpt
|
||
|
||
def change_gpt_sovits_weights(gpt_path,sovits_path):
|
||
try:
|
||
gpt = get_gpt_weights(gpt_path)
|
||
sovits = get_sovits_weights(sovits_path)
|
||
except Exception as e:
|
||
return JSONResponse({"code": 400, "message": str(e)}, status_code=400)
|
||
|
||
speaker_list["default"] = Speaker(name="default", gpt=gpt, sovits=sovits)
|
||
return JSONResponse({"code": 0, "message": "Success"}, status_code=200)
|
||
|
||
|
||
def get_bert_feature(text, word2ph):
|
||
with torch.no_grad():
|
||
inputs = tokenizer(text, return_tensors="pt")
|
||
for i in inputs:
|
||
inputs[i] = inputs[i].to(device) #####输入是long不用管精度问题,精度随bert_model
|
||
res = bert_model(**inputs, output_hidden_states=True)
|
||
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
||
assert len(word2ph) == len(text)
|
||
phone_level_feature = []
|
||
for i in range(len(word2ph)):
|
||
repeat_feature = res[i].repeat(word2ph[i], 1)
|
||
phone_level_feature.append(repeat_feature)
|
||
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||
# if(is_half==True):phone_level_feature=phone_level_feature.half()
|
||
return phone_level_feature.T
|
||
|
||
|
||
def clean_text_inf(text, language, version):
|
||
language = language.replace("all_","")
|
||
phones, word2ph, norm_text = clean_text(text, language, version)
|
||
phones = cleaned_text_to_sequence(phones, version)
|
||
return phones, word2ph, norm_text
|
||
|
||
|
||
def get_bert_inf(phones, word2ph, norm_text, language):
|
||
language=language.replace("all_","")
|
||
if language == "zh":
|
||
bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
|
||
else:
|
||
bert = torch.zeros(
|
||
(1024, len(phones)),
|
||
dtype=torch.float16 if is_half == True else torch.float32,
|
||
).to(device)
|
||
|
||
return bert
|
||
|
||
from text import chinese
|
||
def get_phones_and_bert(text,language,version,final=False):
|
||
if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}:
|
||
formattext = text
|
||
while " " in formattext:
|
||
formattext = formattext.replace(" ", " ")
|
||
if language == "all_zh":
|
||
if re.search(r'[A-Za-z]', formattext):
|
||
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
|
||
formattext = chinese.mix_text_normalize(formattext)
|
||
return get_phones_and_bert(formattext,"zh",version)
|
||
else:
|
||
phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
|
||
bert = get_bert_feature(norm_text, word2ph).to(device)
|
||
elif language == "all_yue" and re.search(r'[A-Za-z]', formattext):
|
||
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
|
||
formattext = chinese.mix_text_normalize(formattext)
|
||
return get_phones_and_bert(formattext,"yue",version)
|
||
else:
|
||
phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
|
||
bert = torch.zeros(
|
||
(1024, len(phones)),
|
||
dtype=torch.float16 if is_half == True else torch.float32,
|
||
).to(device)
|
||
elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}:
|
||
textlist=[]
|
||
langlist=[]
|
||
if language == "auto":
|
||
for tmp in LangSegmenter.getTexts(text):
|
||
langlist.append(tmp["lang"])
|
||
textlist.append(tmp["text"])
|
||
elif language == "auto_yue":
|
||
for tmp in LangSegmenter.getTexts(text):
|
||
if tmp["lang"] == "zh":
|
||
tmp["lang"] = "yue"
|
||
langlist.append(tmp["lang"])
|
||
textlist.append(tmp["text"])
|
||
else:
|
||
for tmp in LangSegmenter.getTexts(text):
|
||
if tmp["lang"] == "en":
|
||
langlist.append(tmp["lang"])
|
||
else:
|
||
# 因无法区别中日韩文汉字,以用户输入为准
|
||
langlist.append(language)
|
||
textlist.append(tmp["text"])
|
||
phones_list = []
|
||
bert_list = []
|
||
norm_text_list = []
|
||
for i in range(len(textlist)):
|
||
lang = langlist[i]
|
||
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang, version)
|
||
bert = get_bert_inf(phones, word2ph, norm_text, lang)
|
||
phones_list.append(phones)
|
||
norm_text_list.append(norm_text)
|
||
bert_list.append(bert)
|
||
bert = torch.cat(bert_list, dim=1)
|
||
phones = sum(phones_list, [])
|
||
norm_text = ''.join(norm_text_list)
|
||
|
||
if not final and len(phones) < 6:
|
||
return get_phones_and_bert("." + text,language,version,final=True)
|
||
|
||
return phones,bert.to(torch.float16 if is_half == True else torch.float32),norm_text
|
||
|
||
|
||
class DictToAttrRecursive(dict):
|
||
def __init__(self, input_dict):
|
||
super().__init__(input_dict)
|
||
for key, value in input_dict.items():
|
||
if isinstance(value, dict):
|
||
value = DictToAttrRecursive(value)
|
||
self[key] = value
|
||
setattr(self, key, value)
|
||
|
||
def __getattr__(self, item):
|
||
try:
|
||
return self[item]
|
||
except KeyError:
|
||
raise AttributeError(f"Attribute {item} not found")
|
||
|
||
def __setattr__(self, key, value):
|
||
if isinstance(value, dict):
|
||
value = DictToAttrRecursive(value)
|
||
super(DictToAttrRecursive, self).__setitem__(key, value)
|
||
super().__setattr__(key, value)
|
||
|
||
def __delattr__(self, item):
|
||
try:
|
||
del self[item]
|
||
except KeyError:
|
||
raise AttributeError(f"Attribute {item} not found")
|
||
|
||
|
||
def get_spepc(hps, filename):
|
||
audio,_ = librosa.load(filename, int(hps.data.sampling_rate))
|
||
audio = torch.FloatTensor(audio)
|
||
maxx=audio.abs().max()
|
||
if(maxx>1):
|
||
audio/=min(2,maxx)
|
||
audio_norm = audio
|
||
audio_norm = audio_norm.unsqueeze(0)
|
||
spec = spectrogram_torch(audio_norm, hps.data.filter_length, hps.data.sampling_rate, hps.data.hop_length,
|
||
hps.data.win_length, center=False)
|
||
return spec
|
||
|
||
|
||
def pack_audio(audio_bytes, data, rate):
|
||
if media_type == "ogg":
|
||
audio_bytes = pack_ogg(audio_bytes, data, rate)
|
||
elif media_type == "aac":
|
||
audio_bytes = pack_aac(audio_bytes, data, rate)
|
||
else:
|
||
# wav无法流式, 先暂存raw
|
||
audio_bytes = pack_raw(audio_bytes, data, rate)
|
||
|
||
return audio_bytes
|
||
|
||
|
||
def pack_ogg(audio_bytes, data, rate):
|
||
# Author: AkagawaTsurunaki
|
||
# Issue:
|
||
# Stack overflow probabilistically occurs
|
||
# when the function `sf_writef_short` of `libsndfile_64bit.dll` is called
|
||
# using the Python library `soundfile`
|
||
# Note:
|
||
# This is an issue related to `libsndfile`, not this project itself.
|
||
# It happens when you generate a large audio tensor (about 499804 frames in my PC)
|
||
# and try to convert it to an ogg file.
|
||
# Related:
|
||
# https://github.com/RVC-Boss/GPT-SoVITS/issues/1199
|
||
# https://github.com/libsndfile/libsndfile/issues/1023
|
||
# https://github.com/bastibe/python-soundfile/issues/396
|
||
# Suggestion:
|
||
# Or split the whole audio data into smaller audio segment to avoid stack overflow?
|
||
|
||
def handle_pack_ogg():
|
||
with sf.SoundFile(audio_bytes, mode='w', samplerate=rate, channels=1, format='ogg') as audio_file:
|
||
audio_file.write(data)
|
||
|
||
import threading
|
||
# See: https://docs.python.org/3/library/threading.html
|
||
# The stack size of this thread is at least 32768
|
||
# If stack overflow error still occurs, just modify the `stack_size`.
|
||
# stack_size = n * 4096, where n should be a positive integer.
|
||
# Here we chose n = 4096.
|
||
stack_size = 4096 * 4096
|
||
try:
|
||
threading.stack_size(stack_size)
|
||
pack_ogg_thread = threading.Thread(target=handle_pack_ogg)
|
||
pack_ogg_thread.start()
|
||
pack_ogg_thread.join()
|
||
except RuntimeError as e:
|
||
# If changing the thread stack size is unsupported, a RuntimeError is raised.
|
||
print("RuntimeError: {}".format(e))
|
||
print("Changing the thread stack size is unsupported.")
|
||
except ValueError as e:
|
||
# If the specified stack size is invalid, a ValueError is raised and the stack size is unmodified.
|
||
print("ValueError: {}".format(e))
|
||
print("The specified stack size is invalid.")
|
||
|
||
return audio_bytes
|
||
|
||
|
||
def pack_raw(audio_bytes, data, rate):
|
||
audio_bytes.write(data.tobytes())
|
||
|
||
return audio_bytes
|
||
|
||
|
||
def pack_wav(audio_bytes, rate):
|
||
if is_int32:
|
||
data = np.frombuffer(audio_bytes.getvalue(),dtype=np.int32)
|
||
wav_bytes = BytesIO()
|
||
sf.write(wav_bytes, data, rate, format='WAV', subtype='PCM_32')
|
||
else:
|
||
data = np.frombuffer(audio_bytes.getvalue(),dtype=np.int16)
|
||
wav_bytes = BytesIO()
|
||
sf.write(wav_bytes, data, rate, format='WAV')
|
||
return wav_bytes
|
||
|
||
|
||
def pack_aac(audio_bytes, data, rate):
|
||
if is_int32:
|
||
pcm = 's32le'
|
||
bit_rate = '256k'
|
||
else:
|
||
pcm = 's16le'
|
||
bit_rate = '128k'
|
||
process = subprocess.Popen([
|
||
'ffmpeg',
|
||
'-f', pcm, # 输入16位有符号小端整数PCM
|
||
'-ar', str(rate), # 设置采样率
|
||
'-ac', '1', # 单声道
|
||
'-i', 'pipe:0', # 从管道读取输入
|
||
'-c:a', 'aac', # 音频编码器为AAC
|
||
'-b:a', bit_rate, # 比特率
|
||
'-vn', # 不包含视频
|
||
'-f', 'adts', # 输出AAC数据流格式
|
||
'pipe:1' # 将输出写入管道
|
||
], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
||
out, _ = process.communicate(input=data.tobytes())
|
||
audio_bytes.write(out)
|
||
|
||
return audio_bytes
|
||
|
||
|
||
def read_clean_buffer(audio_bytes):
|
||
audio_chunk = audio_bytes.getvalue()
|
||
audio_bytes.truncate(0)
|
||
audio_bytes.seek(0)
|
||
|
||
return audio_bytes, audio_chunk
|
||
|
||
|
||
def cut_text(text, punc):
|
||
punc_list = [p for p in punc if p in {",", ".", ";", "?", "!", "、", ",", "。", "?", "!", ";", ":", "…"}]
|
||
if len(punc_list) > 0:
|
||
punds = r"[" + "".join(punc_list) + r"]"
|
||
text = text.strip("\n")
|
||
items = re.split(f"({punds})", text)
|
||
mergeitems = ["".join(group) for group in zip(items[::2], items[1::2])]
|
||
# 在句子不存在符号或句尾无符号的时候保证文本完整
|
||
if len(items)%2 == 1:
|
||
mergeitems.append(items[-1])
|
||
text = "\n".join(mergeitems)
|
||
|
||
while "\n\n" in text:
|
||
text = text.replace("\n\n", "\n")
|
||
|
||
return text
|
||
|
||
|
||
def only_punc(text):
|
||
return not any(t.isalnum() or t.isalpha() for t in text)
|
||
|
||
|
||
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
|
||
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, top_k= 15, top_p = 0.6, temperature = 0.6, speed = 1, inp_refs = None, sample_steps = 32, if_sr = False, spk = "default"):
|
||
infer_sovits = speaker_list[spk].sovits
|
||
vq_model = infer_sovits.vq_model
|
||
hps = infer_sovits.hps
|
||
version = vq_model.version
|
||
|
||
infer_gpt = speaker_list[spk].gpt
|
||
t2s_model = infer_gpt.t2s_model
|
||
max_sec = infer_gpt.max_sec
|
||
|
||
t0 = ttime()
|
||
prompt_text = prompt_text.strip("\n")
|
||
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
|
||
prompt_language, text = prompt_language, text.strip("\n")
|
||
dtype = torch.float16 if is_half == True else torch.float32
|
||
zero_wav = np.zeros(int(hps.data.sampling_rate * 0.3), dtype=np.float16 if is_half == True else np.float32)
|
||
with torch.no_grad():
|
||
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
|
||
wav16k = torch.from_numpy(wav16k)
|
||
zero_wav_torch = torch.from_numpy(zero_wav)
|
||
if (is_half == True):
|
||
wav16k = wav16k.half().to(device)
|
||
zero_wav_torch = zero_wav_torch.half().to(device)
|
||
else:
|
||
wav16k = wav16k.to(device)
|
||
zero_wav_torch = zero_wav_torch.to(device)
|
||
wav16k = torch.cat([wav16k, zero_wav_torch])
|
||
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2) # .float()
|
||
codes = vq_model.extract_latent(ssl_content)
|
||
prompt_semantic = codes[0, 0]
|
||
prompt = prompt_semantic.unsqueeze(0).to(device)
|
||
|
||
if version != "v3":
|
||
refers=[]
|
||
if(inp_refs):
|
||
for path in inp_refs:
|
||
try:
|
||
refer = get_spepc(hps, path).to(dtype).to(device)
|
||
refers.append(refer)
|
||
except Exception as e:
|
||
logger.error(e)
|
||
if(len(refers)==0):
|
||
refers = [get_spepc(hps, ref_wav_path).to(dtype).to(device)]
|
||
else:
|
||
refer = get_spepc(hps, ref_wav_path).to(device).to(dtype)
|
||
|
||
t1 = ttime()
|
||
# os.environ['version'] = version
|
||
prompt_language = dict_language[prompt_language.lower()]
|
||
text_language = dict_language[text_language.lower()]
|
||
phones1, bert1, norm_text1 = get_phones_and_bert(prompt_text, prompt_language, version)
|
||
texts = text.split("\n")
|
||
audio_bytes = BytesIO()
|
||
|
||
for text in texts:
|
||
# 简单防止纯符号引发参考音频泄露
|
||
if only_punc(text):
|
||
continue
|
||
|
||
audio_opt = []
|
||
if (text[-1] not in splits): text += "。" if text_language != "en" else "."
|
||
phones2, bert2, norm_text2 = get_phones_and_bert(text, text_language, version)
|
||
bert = torch.cat([bert1, bert2], 1)
|
||
|
||
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
|
||
bert = bert.to(device).unsqueeze(0)
|
||
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
||
t2 = ttime()
|
||
with torch.no_grad():
|
||
pred_semantic, idx = t2s_model.model.infer_panel(
|
||
all_phoneme_ids,
|
||
all_phoneme_len,
|
||
prompt,
|
||
bert,
|
||
# prompt_phone_len=ph_offset,
|
||
top_k = top_k,
|
||
top_p = top_p,
|
||
temperature = temperature,
|
||
early_stop_num=hz * max_sec)
|
||
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0)
|
||
t3 = ttime()
|
||
|
||
if version != "v3":
|
||
audio = \
|
||
vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0),
|
||
refers,speed=speed).detach().cpu().numpy()[
|
||
0, 0] ###试试重建不带上prompt部分
|
||
else:
|
||
phoneme_ids0=torch.LongTensor(phones1).to(device).unsqueeze(0)
|
||
phoneme_ids1=torch.LongTensor(phones2).to(device).unsqueeze(0)
|
||
# print(11111111, phoneme_ids0, phoneme_ids1)
|
||
fea_ref,ge = vq_model.decode_encp(prompt.unsqueeze(0), phoneme_ids0, refer)
|
||
ref_audio, sr = torchaudio.load(ref_wav_path)
|
||
ref_audio=ref_audio.to(device).float()
|
||
if (ref_audio.shape[0] == 2):
|
||
ref_audio = ref_audio.mean(0).unsqueeze(0)
|
||
if sr!=24000:
|
||
ref_audio=resample(ref_audio,sr)
|
||
# print("ref_audio",ref_audio.abs().mean())
|
||
mel2 = mel_fn(ref_audio)
|
||
mel2 = norm_spec(mel2)
|
||
T_min = min(mel2.shape[2], fea_ref.shape[2])
|
||
mel2 = mel2[:, :, :T_min]
|
||
fea_ref = fea_ref[:, :, :T_min]
|
||
if (T_min > 468):
|
||
mel2 = mel2[:, :, -468:]
|
||
fea_ref = fea_ref[:, :, -468:]
|
||
T_min = 468
|
||
chunk_len = 934 - T_min
|
||
# print("fea_ref",fea_ref,fea_ref.shape)
|
||
# print("mel2",mel2)
|
||
mel2=mel2.to(dtype)
|
||
fea_todo, ge = vq_model.decode_encp(pred_semantic, phoneme_ids1, refer, ge,speed)
|
||
# print("fea_todo",fea_todo)
|
||
# print("ge",ge.abs().mean())
|
||
cfm_resss = []
|
||
idx = 0
|
||
while (1):
|
||
fea_todo_chunk = fea_todo[:, :, idx:idx + chunk_len]
|
||
if (fea_todo_chunk.shape[-1] == 0): break
|
||
idx += chunk_len
|
||
fea = torch.cat([fea_ref, fea_todo_chunk], 2).transpose(2, 1)
|
||
# set_seed(123)
|
||
cfm_res = vq_model.cfm.inference(fea, torch.LongTensor([fea.size(1)]).to(fea.device), mel2, sample_steps, inference_cfg_rate=0)
|
||
cfm_res = cfm_res[:, :, mel2.shape[2]:]
|
||
mel2 = cfm_res[:, :, -T_min:]
|
||
# print("fea", fea)
|
||
# print("mel2in", mel2)
|
||
fea_ref = fea_todo_chunk[:, :, -T_min:]
|
||
cfm_resss.append(cfm_res)
|
||
cmf_res = torch.cat(cfm_resss, 2)
|
||
cmf_res = denorm_spec(cmf_res)
|
||
if bigvgan_model==None:init_bigvgan()
|
||
with torch.inference_mode():
|
||
wav_gen = bigvgan_model(cmf_res)
|
||
audio=wav_gen[0][0].cpu().detach().numpy()
|
||
|
||
max_audio=np.abs(audio).max()
|
||
if max_audio>1:
|
||
audio/=max_audio
|
||
audio_opt.append(audio)
|
||
audio_opt.append(zero_wav)
|
||
audio_opt = np.concatenate(audio_opt, 0)
|
||
t4 = ttime()
|
||
|
||
sr = hps.data.sampling_rate if version != "v3" else 24000
|
||
if if_sr and sr == 24000:
|
||
audio_opt = torch.from_numpy(audio_opt).float().to(device)
|
||
audio_opt,sr=audio_sr(audio_opt.unsqueeze(0),sr)
|
||
max_audio=np.abs(audio_opt).max()
|
||
if max_audio > 1: audio_opt /= max_audio
|
||
sr = 48000
|
||
|
||
if is_int32:
|
||
audio_bytes = pack_audio(audio_bytes,(audio_opt * 2147483647).astype(np.int32),sr)
|
||
else:
|
||
audio_bytes = pack_audio(audio_bytes,(audio_opt * 32768).astype(np.int16),sr)
|
||
# logger.info("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
||
if stream_mode == "normal":
|
||
audio_bytes, audio_chunk = read_clean_buffer(audio_bytes)
|
||
yield audio_chunk
|
||
|
||
if not stream_mode == "normal":
|
||
if media_type == "wav":
|
||
sr = 48000 if if_sr else 24000
|
||
sr = hps.data.sampling_rate if version != "v3" else sr
|
||
audio_bytes = pack_wav(audio_bytes,sr)
|
||
yield audio_bytes.getvalue()
|
||
|
||
|
||
|
||
def handle_control(command):
|
||
if command == "restart":
|
||
os.execl(g_config.python_exec, g_config.python_exec, *sys.argv)
|
||
elif command == "exit":
|
||
os.kill(os.getpid(), signal.SIGTERM)
|
||
exit(0)
|
||
|
||
|
||
def handle_change(path, text, language):
|
||
if is_empty(path, text, language):
|
||
return JSONResponse({"code": 400, "message": '缺少任意一项以下参数: "path", "text", "language"'}, status_code=400)
|
||
|
||
if path != "" or path is not None:
|
||
default_refer.path = path
|
||
if text != "" or text is not None:
|
||
default_refer.text = text
|
||
if language != "" or language is not None:
|
||
default_refer.language = language
|
||
|
||
logger.info(f"当前默认参考音频路径: {default_refer.path}")
|
||
logger.info(f"当前默认参考音频文本: {default_refer.text}")
|
||
logger.info(f"当前默认参考音频语种: {default_refer.language}")
|
||
logger.info(f"is_ready: {default_refer.is_ready()}")
|
||
|
||
|
||
return JSONResponse({"code": 0, "message": "Success"}, status_code=200)
|
||
|
||
|
||
def handle(refer_wav_path, prompt_text, prompt_language, text, text_language, cut_punc, top_k, top_p, temperature, speed, inp_refs, sample_steps, if_sr):
|
||
if (
|
||
refer_wav_path == "" or refer_wav_path is None
|
||
or prompt_text == "" or prompt_text is None
|
||
or prompt_language == "" or prompt_language is None
|
||
):
|
||
refer_wav_path, prompt_text, prompt_language = (
|
||
default_refer.path,
|
||
default_refer.text,
|
||
default_refer.language,
|
||
)
|
||
if not default_refer.is_ready():
|
||
return JSONResponse({"code": 400, "message": "未指定参考音频且接口无预设"}, status_code=400)
|
||
|
||
if not sample_steps in [4,8,16,32]:
|
||
sample_steps = 32
|
||
|
||
if cut_punc == None:
|
||
text = cut_text(text,default_cut_punc)
|
||
else:
|
||
text = cut_text(text,cut_punc)
|
||
|
||
return StreamingResponse(get_tts_wav(refer_wav_path, prompt_text, prompt_language, text, text_language, top_k, top_p, temperature, speed, inp_refs, sample_steps, if_sr), media_type="audio/"+media_type)
|
||
|
||
|
||
|
||
|
||
# --------------------------------
|
||
# 初始化部分
|
||
# --------------------------------
|
||
dict_language = {
|
||
"中文": "all_zh",
|
||
"粤语": "all_yue",
|
||
"英文": "en",
|
||
"日文": "all_ja",
|
||
"韩文": "all_ko",
|
||
"中英混合": "zh",
|
||
"粤英混合": "yue",
|
||
"日英混合": "ja",
|
||
"韩英混合": "ko",
|
||
"多语种混合": "auto", #多语种启动切分识别语种
|
||
"多语种混合(粤语)": "auto_yue",
|
||
"all_zh": "all_zh",
|
||
"all_yue": "all_yue",
|
||
"en": "en",
|
||
"all_ja": "all_ja",
|
||
"all_ko": "all_ko",
|
||
"zh": "zh",
|
||
"yue": "yue",
|
||
"ja": "ja",
|
||
"ko": "ko",
|
||
"auto": "auto",
|
||
"auto_yue": "auto_yue",
|
||
}
|
||
|
||
# logger
|
||
logging.config.dictConfig(uvicorn.config.LOGGING_CONFIG)
|
||
logger = logging.getLogger('uvicorn')
|
||
|
||
# 获取配置
|
||
g_config = global_config.Config()
|
||
|
||
# 获取参数
|
||
parser = argparse.ArgumentParser(description="GPT-SoVITS api")
|
||
|
||
parser.add_argument("-s", "--sovits_path", type=str, default=g_config.sovits_path, help="SoVITS模型路径")
|
||
parser.add_argument("-g", "--gpt_path", type=str, default=g_config.gpt_path, help="GPT模型路径")
|
||
parser.add_argument("-dr", "--default_refer_path", type=str, default="", help="默认参考音频路径")
|
||
parser.add_argument("-dt", "--default_refer_text", type=str, default="", help="默认参考音频文本")
|
||
parser.add_argument("-dl", "--default_refer_language", type=str, default="", help="默认参考音频语种")
|
||
parser.add_argument("-d", "--device", type=str, default=g_config.infer_device, help="cuda / cpu")
|
||
parser.add_argument("-a", "--bind_addr", type=str, default="0.0.0.0", help="default: 0.0.0.0")
|
||
parser.add_argument("-p", "--port", type=int, default=g_config.api_port, help="default: 9880")
|
||
parser.add_argument("-fp", "--full_precision", action="store_true", default=False, help="覆盖config.is_half为False, 使用全精度")
|
||
parser.add_argument("-hp", "--half_precision", action="store_true", default=False, help="覆盖config.is_half为True, 使用半精度")
|
||
# bool值的用法为 `python ./api.py -fp ...`
|
||
# 此时 full_precision==True, half_precision==False
|
||
parser.add_argument("-sm", "--stream_mode", type=str, default="close", help="流式返回模式, close / normal / keepalive")
|
||
parser.add_argument("-mt", "--media_type", type=str, default="wav", help="音频编码格式, wav / ogg / aac")
|
||
parser.add_argument("-st", "--sub_type", type=str, default="int16", help="音频数据类型, int16 / int32")
|
||
parser.add_argument("-cp", "--cut_punc", type=str, default="", help="文本切分符号设定, 符号范围,.;?!、,。?!;:…")
|
||
# 切割常用分句符为 `python ./api.py -cp ".?!。?!"`
|
||
parser.add_argument("-hb", "--hubert_path", type=str, default=g_config.cnhubert_path, help="覆盖config.cnhubert_path")
|
||
parser.add_argument("-b", "--bert_path", type=str, default=g_config.bert_path, help="覆盖config.bert_path")
|
||
|
||
args = parser.parse_args()
|
||
sovits_path = args.sovits_path
|
||
gpt_path = args.gpt_path
|
||
device = args.device
|
||
port = args.port
|
||
host = args.bind_addr
|
||
cnhubert_base_path = args.hubert_path
|
||
bert_path = args.bert_path
|
||
default_cut_punc = args.cut_punc
|
||
|
||
# 应用参数配置
|
||
default_refer = DefaultRefer(args.default_refer_path, args.default_refer_text, args.default_refer_language)
|
||
|
||
# 模型路径检查
|
||
if sovits_path == "":
|
||
sovits_path = g_config.pretrained_sovits_path
|
||
logger.warn(f"未指定SoVITS模型路径, fallback后当前值: {sovits_path}")
|
||
if gpt_path == "":
|
||
gpt_path = g_config.pretrained_gpt_path
|
||
logger.warn(f"未指定GPT模型路径, fallback后当前值: {gpt_path}")
|
||
|
||
# 指定默认参考音频, 调用方 未提供/未给全 参考音频参数时使用
|
||
if default_refer.path == "" or default_refer.text == "" or default_refer.language == "":
|
||
default_refer.path, default_refer.text, default_refer.language = "", "", ""
|
||
logger.info("未指定默认参考音频")
|
||
else:
|
||
logger.info(f"默认参考音频路径: {default_refer.path}")
|
||
logger.info(f"默认参考音频文本: {default_refer.text}")
|
||
logger.info(f"默认参考音频语种: {default_refer.language}")
|
||
|
||
# 获取半精度
|
||
is_half = g_config.is_half
|
||
if args.full_precision:
|
||
is_half = False
|
||
if args.half_precision:
|
||
is_half = True
|
||
if args.full_precision and args.half_precision:
|
||
is_half = g_config.is_half # 炒饭fallback
|
||
logger.info(f"半精: {is_half}")
|
||
|
||
# 流式返回模式
|
||
if args.stream_mode.lower() in ["normal","n"]:
|
||
stream_mode = "normal"
|
||
logger.info("流式返回已开启")
|
||
else:
|
||
stream_mode = "close"
|
||
|
||
# 音频编码格式
|
||
if args.media_type.lower() in ["aac","ogg"]:
|
||
media_type = args.media_type.lower()
|
||
elif stream_mode == "close":
|
||
media_type = "wav"
|
||
else:
|
||
media_type = "ogg"
|
||
logger.info(f"编码格式: {media_type}")
|
||
|
||
is_int32 = True
|
||
|
||
# 初始化模型
|
||
cnhubert.cnhubert_base_path = cnhubert_base_path
|
||
# tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
||
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
||
|
||
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
|
||
ssl_model = cnhubert.get_model()
|
||
if is_half:
|
||
bert_model = bert_model.half().to(device)
|
||
ssl_model = ssl_model.half().to(device)
|
||
else:
|
||
bert_model = bert_model.to(device)
|
||
ssl_model = ssl_model.to(device)
|
||
change_gpt_sovits_weights(gpt_path = gpt_path, sovits_path = sovits_path)
|
||
|
||
|
||
|
||
# --------------------------------
|
||
# 接口部分
|
||
# --------------------------------
|
||
app = FastAPI()
|
||
|
||
@app.post("/")
|
||
async def tts_endpoint(request: Request):
|
||
json_post_raw = await request.json()
|
||
return handle(
|
||
json_post_raw.get("refer_wav_path"),
|
||
json_post_raw.get("prompt_text"),
|
||
json_post_raw.get("prompt_language"),
|
||
json_post_raw.get("text"),
|
||
json_post_raw.get("text_language"),
|
||
json_post_raw.get("cut_punc"),
|
||
json_post_raw.get("top_k", 15),
|
||
json_post_raw.get("top_p", 1.0),
|
||
json_post_raw.get("temperature", 1.0),
|
||
json_post_raw.get("speed", 1.0),
|
||
json_post_raw.get("inp_refs", []),
|
||
json_post_raw.get("sample_steps", 32),
|
||
json_post_raw.get("if_sr", False)
|
||
)
|
||
|
||
from GPT_SoVITS.inference_cli import synthesize
|
||
import soundfile as sf
|
||
import io
|
||
from fastapi.responses import StreamingResponse
|
||
|
||
|
||
def version_4_cli(
|
||
GPT_model_path = "GPT_SoVITS/pretrained_models/kurari-e40.ckpt",
|
||
SoVITS_model_path = "GPT_SoVITS/pretrained_models/kurari_e20_s1800_l32.pth",
|
||
ref_text: str = "おはよう〜。今日はどんな1日過ごすー?くらりはね〜いつでもあなたの味方だよ",
|
||
ref_language: str = "日文",
|
||
target_text: str = None,
|
||
text_language: str = "日文",
|
||
output_path: str = None,
|
||
character_name: str = "Kurari",
|
||
model_id: int = 14,
|
||
version: str = "v1", # v3 or v4
|
||
loudness_boost=False,
|
||
gain=0,
|
||
normalize=False,
|
||
energy_scale=1.0,
|
||
volume_scale=1.0,
|
||
strain_effect=0.0,
|
||
shouting_type="normal", # normal, loud, soft, whisper
|
||
intesity = 0,
|
||
):
|
||
print(f"version 4 cli func: the intestiy is {intesity}")
|
||
# Create a temporary buffer to store the audio
|
||
audio_buffer = io.BytesIO()
|
||
|
||
path = "idols/kurari/kurari.wav"
|
||
if character_name == "saotome":
|
||
path = "idols/saotome/saotome.wav"
|
||
GPT_model_path = "GPT_SoVITS/pretrained_models/saotome-e30.ckpt"
|
||
SoVITS_model_path = "GPT_SoVITS/pretrained_models/saotome_e9_s522_l32.pth"
|
||
ref_language = "日文"
|
||
elif character_name == "Baacharu" or character_name == "baacharu":
|
||
path = "idols/baacharu/baacharu.wav"
|
||
GPT_model_path = "GPT_SoVITS/pretrained_models/baacharu-e40.ckpt"
|
||
SoVITS_model_path = "GPT_SoVITS/pretrained_models/baacharu_e15_s1320_l32.pth"
|
||
ref_language = "日文"
|
||
elif character_name in ["Ikko", "ikko", "Ikka", "ikka"]:
|
||
if loudness_boost:
|
||
path = "idols/ikka/ikko_boost.wav"
|
||
else:
|
||
path = "idols/ikka/ikko.wav"
|
||
GPT_model_path = "GPT_SoVITS/pretrained_models/ikko-san-e45.ckpt"
|
||
SoVITS_model_path = "GPT_SoVITS/pretrained_models/s2Gv2ProPlus.pth"
|
||
elif character_name in ["ruroro", "Ruroro"]:
|
||
path = "idols/ruroro/ruroro.wav"
|
||
GPT_model_path = "GPT_SoVITS/pretrained_models/ruroro-e40.ckpt"
|
||
SoVITS_model_path = "GPT_SoVITS/pretrained_models/s2Gv2ProPlus.pth"
|
||
if (character_name == "kurari" or character_name=="Kurari") and version == "v2":
|
||
GPT_model_path = "GPT_SoVITS/pretrained_models/kurari-hql-e40.ckpt"
|
||
SoVITS_model_path = "GPT_SoVITS/pretrained_models/kurari-hql_e20_s1240.pth"
|
||
elif (character_name == "kurari" or character_name=="Kurari") and version == "v3":
|
||
GPT_model_path = "GPT_SoVITS/pretrained_models/kurari-high-e45.ckpt"
|
||
SoVITS_model_path = "GPT_SoVITS/pretrained_models/kurari-high_e25_s325.pth"
|
||
elif (character_name == "siratori"):
|
||
GPT_model_path = "GPT_SoVITS/pretrained_models/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt"
|
||
SoVITS_model_path = "GPT_SoVITS/pretrained_models/s2Gv2ProPlus.pth"
|
||
|
||
if shouting_type == "angry":
|
||
path = "idols/loude-siratori/angry.wav"
|
||
elif shouting_type == "cheering":
|
||
path = "idols/loude-siratori/cheering.wav"
|
||
elif shouting_type == "joyful":
|
||
path = "idols/loude-siratori/joyful.wav"
|
||
else:
|
||
path = "idols/loude-siratori/surprised.wav"
|
||
|
||
|
||
|
||
synthesis_result = synthesize(
|
||
GPT_model_path = GPT_model_path,
|
||
SoVITS_model_path = SoVITS_model_path,
|
||
ref_audio_path = path,
|
||
ref_text = ref_text,
|
||
ref_language = ref_language,
|
||
target_text = target_text,
|
||
text_language = text_language,
|
||
output_path = output_path, # Don't save to file
|
||
loudness_boost=loudness_boost,
|
||
gain=gain,
|
||
normalize=normalize,
|
||
energy_scale=energy_scale,
|
||
volume_scale=volume_scale,
|
||
strain_effect=strain_effect,
|
||
intensity=intesity
|
||
)
|
||
|
||
# Get the last audio data and sample rate from synthesis result
|
||
result_list = list(synthesis_result)
|
||
if result_list:
|
||
last_sampling_rate, last_audio_data = result_list[-1]
|
||
|
||
# Write audio data to buffer
|
||
sf.write(audio_buffer, last_audio_data, last_sampling_rate, format="wav")
|
||
audio_buffer.seek(0)
|
||
|
||
return audio_buffer, last_sampling_rate
|
||
|
||
return None, None
|
||
|
||
|
||
@app.get("/")
|
||
async def tts_endpoint(
|
||
prompt_text: str = "今日は友達と一緒に映画を見に行く予定ですが、天気が悪くて少し心配です。",
|
||
prompt_language: str = "日文",
|
||
character: str = "saotome",
|
||
text: str = None,
|
||
text_language: str = None,
|
||
cut_punc: str = None,
|
||
top_k: int = 15,
|
||
top_p: float = 1.0,
|
||
temperature: float = 1.0,
|
||
speed: float = 1.0,
|
||
sample_steps: int = 20,
|
||
if_sr: bool = False,
|
||
version: str = "v1",
|
||
loudness_boost: str = "false", # Accept as string from URL, convert to bool
|
||
gain: str = "0", # Accept as string from URL, convert to float
|
||
normalize: str = "false", # Accept as string from URL, convert to bool
|
||
energy_scale: str = "1.0", # Accept as string from URL, convert to float
|
||
volume_scale: str = "1.0", # Accept as string from URL, convert to float
|
||
strain_effect: str = "0.0", # Accept as string from URL, convert to float
|
||
shouting_type: str = "normal", # Accept as string from URL, convert to appropriate type
|
||
intesity: str = "0.0",
|
||
):
|
||
if character == "kurari" or character == "Kurari":
|
||
prompt_text = "おはよう〜。今日はどんな1日過ごすー?くらりはね〜いつでもあなたの味方だよ"
|
||
elif character == "saotome":
|
||
prompt_text = "朝ごはんにはトーストと卵、そしてコーヒーを飲みました。簡単だけど、朝の時間が少し幸せに感じられる瞬間でした。"
|
||
elif character in ["ruroro", "Ruroro"]:
|
||
prompt_text = "上季型等級滿等還會再返還680原型這樣每個月的基本花費大概只需要落在500元台幣左右但是可以得到超過等同價值的內容物"
|
||
prompt_language = "中英混合"
|
||
elif character in ["Ikko", "ikko", "Ikka", "ikka"]:
|
||
prompt_text = "せおいなげ、まじばな、らぶらぶ、あげあげ、まぼろし"
|
||
elif character in ["Baacharu", "baacharu"]:
|
||
prompt_text = "どーもー、世界初男性バーチャルユーチューバーのばあちゃるです"
|
||
elif character in ["siratori", "Siratori"] and shouting_type != "normal":
|
||
if shouting_type == "angry":
|
||
prompt_text = "Dogs are sitting by the door. kids are talking by the door."
|
||
elif shouting_type == "cheering":
|
||
prompt_text = "Kids are talking by the door. Kids are talking by the door."
|
||
elif shouting_type == "joyful":
|
||
prompt_text == "Kids are talking by the door. Dogs are sitting by the door."
|
||
elif shouting_type == "surprised":
|
||
prompt_text = "Kids are talking by the door. Kids are talking by the door."
|
||
|
||
|
||
if character in ["Kurari", "saotome", "ikka", "Ikka", "ikko", "Ikko", "Baacharu", "baacharu", "ruroro", "Ruroro"] or (character == "siratori" and shouting_type != "normal"):
|
||
if text_language == "all_ja":
|
||
text_language = "日文"
|
||
elif text_language == "ja":
|
||
text_language = "日英混合"
|
||
elif text_language == "en":
|
||
text_language = "英文"
|
||
elif text_language == "zh":
|
||
text_language = "中英混合"
|
||
elif text_language == "all_zh":
|
||
text_language = "中文"
|
||
elif text_language == "ko":
|
||
text_language = "韩文"
|
||
|
||
# Convert string parameters from URL to appropriate types
|
||
loudness_boost = loudness_boost.lower() == "true"
|
||
gain = float(gain)
|
||
normalize = normalize.lower() == "true"
|
||
energy_scale = float(energy_scale)
|
||
volume_scale = float(volume_scale)
|
||
strain_effect = float(strain_effect)
|
||
|
||
print(f"Tts endpoint func: the intesty is {intesity}")
|
||
|
||
audio_buffer, sample_rate = version_4_cli(
|
||
character_name=character,
|
||
ref_text=prompt_text,
|
||
ref_language=prompt_language,
|
||
target_text=text,
|
||
text_language=text_language or "日文",
|
||
version=version,
|
||
loudness_boost=loudness_boost,
|
||
gain=gain,
|
||
normalize=normalize,
|
||
energy_scale=energy_scale,
|
||
volume_scale=volume_scale,
|
||
strain_effect=strain_effect,
|
||
shouting_type= shouting_type,
|
||
intesity=intesity
|
||
)
|
||
|
||
if audio_buffer:
|
||
return StreamingResponse(
|
||
audio_buffer,
|
||
media_type="audio/wav",
|
||
headers={"Content-Disposition": "attachment; filename=output.wav"}
|
||
)
|
||
else:
|
||
return JSONResponse({"error": "Failed to generate audio"}, status_code=400)
|
||
|
||
|
||
refer_wav_path = f"idols/{character}/{character}.wav"
|
||
inp_refs = [f"idols/{character}/refs/{file}" for file in os.listdir(f"idols/{character}/refs") if file.endswith('.wav')]
|
||
|
||
|
||
print(f"the base path is {refer_wav_path}")
|
||
return handle(refer_wav_path, prompt_text, prompt_language, text, text_language, cut_punc, top_k, top_p, temperature, speed, inp_refs, sample_steps, if_sr)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
logging.info("the server is running")
|
||
uvicorn.run(app, host=host, port=port, workers=1)
|