mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-09-30 01:25:58 +08:00
1995 lines
73 KiB
Python
1995 lines
73 KiB
Python
import argparse
|
||
import json
|
||
import os
|
||
import platform
|
||
import re
|
||
import shutil
|
||
import traceback
|
||
from functools import partial
|
||
from multiprocessing import cpu_count
|
||
from subprocess import Popen
|
||
|
||
import gradio as gr
|
||
import psutil
|
||
import torch
|
||
import yaml
|
||
|
||
from config import (
|
||
GPU_INDEX,
|
||
GPU_INFOS,
|
||
IS_GPU,
|
||
GPT_weight_root,
|
||
GPT_weight_version2root,
|
||
SoVITS_weight_root,
|
||
SoVITS_weight_version2root,
|
||
change_choices,
|
||
exp_root,
|
||
get_weights_names,
|
||
infer_device,
|
||
is_half,
|
||
is_share,
|
||
memset,
|
||
pretrained_gpt_name,
|
||
pretrained_sovits_name,
|
||
python_exec,
|
||
webui_port_infer_tts,
|
||
webui_port_main,
|
||
webui_port_subfix,
|
||
webui_port_uvr5,
|
||
)
|
||
from GPT_SoVITS.Accelerate import backends, console, logger
|
||
from tools import my_utils
|
||
from tools.asr.config import asr_dict
|
||
from tools.assets import css, js, top_html
|
||
from tools.i18n.i18n import I18nAuto, scan_language_list
|
||
from tools.my_utils import check_details, check_for_existance
|
||
|
||
os.environ["PYTHONPATH"] = now_dir = os.getcwd()
|
||
os.environ["version"] = version = "v2Pro"
|
||
os.environ["TORCH_DISTRIBUTED_DEBUG"] = "INFO"
|
||
os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1"
|
||
os.environ["all_proxy"] = ""
|
||
|
||
|
||
backends_gradio = [(b.replace("-", " "), b) for b in backends]
|
||
|
||
_LANG_RE = re.compile(r"^[a-z]{2}[_-][A-Z]{2}$")
|
||
|
||
|
||
def lang_type(text: str) -> str:
|
||
if text == "Auto":
|
||
return text
|
||
if not _LANG_RE.match(text):
|
||
raise argparse.ArgumentTypeError(f"Unspported Format: {text}, Expected ll_CC/ll-CC")
|
||
ll, cc = re.split(r"[_-]", text)
|
||
language = f"{ll}_{cc}"
|
||
if language in scan_language_list():
|
||
return language
|
||
else:
|
||
return "en_US"
|
||
|
||
|
||
def build_parser() -> argparse.ArgumentParser:
|
||
p = argparse.ArgumentParser(
|
||
prog="python -s webui.py",
|
||
description="python -s webui.py zh_CN",
|
||
)
|
||
p.add_argument(
|
||
"language",
|
||
nargs="?",
|
||
default="Auto",
|
||
type=lang_type,
|
||
help="Language Code, Such as zh_CN, en-US",
|
||
)
|
||
return p
|
||
|
||
|
||
args = build_parser().parse_args()
|
||
|
||
tmp = os.path.join(now_dir, "TEMP")
|
||
os.makedirs(tmp, exist_ok=True)
|
||
os.environ["TEMP"] = tmp
|
||
if os.path.exists(tmp):
|
||
for name in os.listdir(tmp):
|
||
if name == "jieba.cache":
|
||
continue
|
||
path = f"{tmp}/{name}"
|
||
delete = os.remove if os.path.isfile(path) else shutil.rmtree
|
||
try:
|
||
delete(path)
|
||
except Exception as e:
|
||
console.print(e)
|
||
pass
|
||
|
||
|
||
language = str(args.language)
|
||
i18n = I18nAuto(language=language)
|
||
change_choice = partial(change_choices, i18n=i18n)
|
||
|
||
n_cpu = cpu_count()
|
||
|
||
set_gpu_numbers = GPU_INDEX
|
||
gpu_infos = GPU_INFOS
|
||
mem = memset
|
||
is_gpu_ok = IS_GPU
|
||
|
||
v3v4set = {"v3", "v4"}
|
||
|
||
sv_path = "GPT_SoVITS/pretrained_models/sv/pretrained_eres2netv2w24s4ep4.ckpt"
|
||
|
||
|
||
def set_default():
|
||
global \
|
||
default_batch_size, \
|
||
default_max_batch_size, \
|
||
gpu_info, \
|
||
default_sovits_epoch, \
|
||
default_sovits_save_every_epoch, \
|
||
max_sovits_epoch, \
|
||
max_sovits_save_every_epoch, \
|
||
default_batch_size_s1, \
|
||
if_force_ckpt
|
||
if_force_ckpt = False
|
||
gpu_info = "\n".join(gpu_infos)
|
||
if is_gpu_ok:
|
||
minmem = min(mem)
|
||
default_batch_size = minmem // 2 if version not in v3v4set else minmem // 8
|
||
default_batch_size_s1 = minmem // 2
|
||
else:
|
||
default_batch_size = default_batch_size_s1 = int(psutil.virtual_memory().total / 1024 / 1024 / 1024 / 4)
|
||
if version not in v3v4set:
|
||
default_sovits_epoch = 8
|
||
default_sovits_save_every_epoch = 4
|
||
max_sovits_epoch = 25 # 40
|
||
max_sovits_save_every_epoch = 25 # 10
|
||
else:
|
||
default_sovits_epoch = 2
|
||
default_sovits_save_every_epoch = 1
|
||
max_sovits_epoch = 16 # 40 # 3 #训太多=作死
|
||
max_sovits_save_every_epoch = 10 # 10 # 3
|
||
|
||
default_batch_size = max(1, default_batch_size)
|
||
default_batch_size_s1 = max(1, default_batch_size_s1)
|
||
default_max_batch_size = default_batch_size * 3
|
||
|
||
|
||
set_default()
|
||
|
||
default_gpu_numbers = infer_device.index
|
||
|
||
|
||
def check_pretrained_is_exist(version):
|
||
pretrained_model_list = (
|
||
pretrained_sovits_name[version],
|
||
pretrained_sovits_name[version].replace("s2G", "s2D"),
|
||
pretrained_gpt_name[version],
|
||
"GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
|
||
"GPT_SoVITS/pretrained_models/chinese-hubert-base",
|
||
)
|
||
_ = ""
|
||
for i in pretrained_model_list:
|
||
if "s2Dv3" not in i and "s2Dv4" not in i and os.path.exists(i) is False:
|
||
_ += f"\n {i}"
|
||
if _:
|
||
logger.warning(i18n("以下模型不存在:") + _)
|
||
|
||
|
||
check_pretrained_is_exist(version)
|
||
for key in pretrained_sovits_name.keys():
|
||
if os.path.exists(pretrained_sovits_name[key]) is False:
|
||
pretrained_sovits_name[key] = ""
|
||
for key in pretrained_gpt_name.keys():
|
||
if os.path.exists(pretrained_gpt_name[key]) is False:
|
||
pretrained_gpt_name[key] = ""
|
||
|
||
|
||
for root in SoVITS_weight_root + GPT_weight_root:
|
||
os.makedirs(root, exist_ok=True)
|
||
SoVITS_names, GPT_names = get_weights_names(i18n)
|
||
|
||
p_label: Popen | None = None
|
||
p_uvr5: Popen | None = None
|
||
p_asr: Popen | None = None
|
||
p_denoise: Popen | None = None
|
||
p_tts_inference: Popen | None = None
|
||
|
||
|
||
def kill_process(pid: int, process_name=""):
|
||
try:
|
||
p = psutil.Process(pid)
|
||
except psutil.NoSuchProcess:
|
||
return
|
||
|
||
for c in p.children(recursive=False):
|
||
try:
|
||
c.kill()
|
||
c.wait(timeout=5)
|
||
except (psutil.NoSuchProcess, psutil.TimeoutExpired):
|
||
pass
|
||
|
||
try:
|
||
p.kill()
|
||
p.wait(timeout=5)
|
||
except (psutil.NoSuchProcess, psutil.TimeoutExpired):
|
||
pass
|
||
|
||
console.print(process_name + i18n("进程已终止"))
|
||
|
||
|
||
def process_info(process_name="", indicator=""):
|
||
if indicator == "opened":
|
||
return process_name + i18n("已开启")
|
||
elif indicator == "open":
|
||
return i18n("开启") + process_name
|
||
elif indicator == "closed":
|
||
return process_name + i18n("已关闭")
|
||
elif indicator == "close":
|
||
return i18n("关闭") + process_name
|
||
elif indicator == "running":
|
||
return process_name + i18n("运行中")
|
||
elif indicator == "occupy":
|
||
return process_name + i18n("占用中") + "," + i18n("需先终止才能开启下一次任务")
|
||
elif indicator == "finish":
|
||
return process_name + i18n("已完成")
|
||
elif indicator == "failed":
|
||
return process_name + i18n("失败")
|
||
elif indicator == "info":
|
||
return process_name + i18n("进程输出信息")
|
||
else:
|
||
return process_name
|
||
|
||
|
||
process_name_subfix = i18n("音频标注WebUI")
|
||
|
||
|
||
def change_label(path_list):
|
||
global p_label
|
||
if p_label is None:
|
||
check_for_existance([path_list])
|
||
path_list = my_utils.clean_path(path_list)
|
||
cmd = '"%s" -s tools/subfix_webui.py --load_list "%s" --webui_port %s --is_share %s' % (
|
||
python_exec,
|
||
path_list,
|
||
webui_port_subfix,
|
||
is_share,
|
||
)
|
||
yield (
|
||
process_info(process_name_subfix, "opened"),
|
||
gr.update(visible=False),
|
||
gr.update(visible=True),
|
||
)
|
||
console.print(cmd)
|
||
p_label = Popen(cmd, shell=True)
|
||
else:
|
||
kill_process(p_label.pid, process_name_subfix)
|
||
p_label = None
|
||
yield (
|
||
process_info(process_name_subfix, "closed"),
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
)
|
||
|
||
|
||
process_name_uvr5 = i18n("人声分离WebUI")
|
||
|
||
|
||
def change_uvr5():
|
||
global p_uvr5
|
||
if p_uvr5 is None:
|
||
cmd = '"%s" -s tools/uvr5/webui.py "%s" %s %s %s' % (
|
||
python_exec,
|
||
infer_device,
|
||
is_half,
|
||
webui_port_uvr5,
|
||
is_share,
|
||
)
|
||
yield (
|
||
process_info(process_name_uvr5, "opened"),
|
||
gr.update(visible=False),
|
||
gr.update(visible=True),
|
||
)
|
||
console.print(cmd)
|
||
p_uvr5 = Popen(cmd, shell=True)
|
||
else:
|
||
kill_process(p_uvr5.pid, process_name_uvr5)
|
||
p_uvr5 = None
|
||
yield (
|
||
process_info(process_name_uvr5, "closed"),
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
)
|
||
|
||
|
||
process_name_tts = i18n("TTS推理WebUI")
|
||
|
||
|
||
def change_tts_inference(
|
||
gpu_number: int,
|
||
gpt_path: str,
|
||
sovits_path: str,
|
||
batched_infer_enabled: bool,
|
||
backends_dropdown: str,
|
||
):
|
||
console.print(gpt_path, sovits_path)
|
||
global p_tts_inference
|
||
env = os.environ.copy()
|
||
cmd: list[str] = [python_exec, "-s"]
|
||
if batched_infer_enabled:
|
||
# fmt: off
|
||
cmd.extend(
|
||
[
|
||
"GPT_SoVITS/inference_webui_fast.py", language,
|
||
"-d", f"{infer_device.type}:{gpu_number}",
|
||
"-p", str(webui_port_infer_tts),
|
||
"--gpt", gpt_path,
|
||
"--sovits", sovits_path,
|
||
]
|
||
) # fmt: on
|
||
else:
|
||
# fmt: off
|
||
cmd.extend(
|
||
[
|
||
"GPT_SoVITS/inference_webui.py", language,
|
||
"-b", backends_dropdown,
|
||
"-d", f"{infer_device.type}:{gpu_number}",
|
||
"-p", str(webui_port_infer_tts),
|
||
"--gpt", gpt_path,
|
||
"--sovits", sovits_path,
|
||
]
|
||
) # fmt: on
|
||
|
||
if is_share:
|
||
cmd.append("-s")
|
||
|
||
if p_tts_inference is None:
|
||
yield (
|
||
process_info(process_name_tts, "opened"),
|
||
gr.update(visible=False),
|
||
gr.update(visible=True),
|
||
)
|
||
console.print(" ".join(cmd))
|
||
p_tts_inference = Popen(cmd, env=env)
|
||
else:
|
||
kill_process(p_tts_inference.pid, process_name_tts)
|
||
p_tts_inference = None
|
||
yield (
|
||
process_info(process_name_tts, "closed"),
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
)
|
||
|
||
|
||
process_name_asr = i18n("语音识别")
|
||
|
||
|
||
def open_asr(asr_inp_dir, asr_opt_dir, asr_model, asr_model_size, asr_lang, asr_precision):
|
||
global p_asr
|
||
if p_asr is None:
|
||
asr_inp_dir = my_utils.clean_path(asr_inp_dir)
|
||
asr_opt_dir = my_utils.clean_path(asr_opt_dir)
|
||
check_for_existance([asr_inp_dir])
|
||
cmd = f'"{python_exec}" -s tools/asr/{asr_dict[asr_model]["path"]}'
|
||
cmd += f' -i "{asr_inp_dir}"'
|
||
cmd += f' -o "{asr_opt_dir}"'
|
||
cmd += f" -s {asr_model_size}"
|
||
cmd += f" -l {asr_lang}"
|
||
cmd += f" -p {asr_precision}"
|
||
output_file_name = os.path.basename(asr_inp_dir)
|
||
output_folder = asr_opt_dir or "output/asr_opt"
|
||
output_file_path = os.path.abspath(f"{output_folder}/{output_file_name}.list")
|
||
yield (
|
||
process_info(process_name_asr, "opened"),
|
||
gr.update(visible=False),
|
||
gr.update(visible=True),
|
||
gr.skip(),
|
||
gr.skip(),
|
||
gr.skip(),
|
||
)
|
||
console.print(cmd)
|
||
p_asr = Popen(cmd, shell=True)
|
||
p_asr.wait()
|
||
p_asr = None
|
||
yield (
|
||
process_info(process_name_asr, "finish"),
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
gr.update(value=output_file_path),
|
||
gr.update(value=output_file_path),
|
||
gr.update(value=asr_inp_dir),
|
||
)
|
||
else:
|
||
yield (
|
||
process_info(process_name_asr, "occupy"),
|
||
gr.update(visible=False),
|
||
gr.update(visible=True),
|
||
gr.skip(),
|
||
gr.skip(),
|
||
gr.skip(),
|
||
)
|
||
|
||
|
||
def close_asr():
|
||
global p_asr
|
||
if p_asr is not None:
|
||
kill_process(p_asr.pid, process_name_asr)
|
||
p_asr = None
|
||
return (
|
||
process_info(process_name_asr, "closed"),
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
)
|
||
|
||
|
||
p_train_SoVITS: Popen | None = None
|
||
process_name_sovits = i18n("SoVITS训练")
|
||
|
||
|
||
def open1Ba(
|
||
version,
|
||
batch_size,
|
||
total_epoch,
|
||
exp_name,
|
||
text_low_lr_rate,
|
||
if_save_latest,
|
||
if_save_every_weights,
|
||
save_every_epoch,
|
||
gpu_numbers1Ba,
|
||
pretrained_s2G,
|
||
pretrained_s2D,
|
||
if_grad_ckpt,
|
||
lora_rank,
|
||
):
|
||
global p_train_SoVITS
|
||
if p_train_SoVITS is None:
|
||
exp_name = exp_name.rstrip(" ")
|
||
config_file = (
|
||
"GPT_SoVITS/configs/s2.json"
|
||
if version not in {"v2Pro", "v2ProPlus"}
|
||
else f"GPT_SoVITS/configs/s2{version}.json"
|
||
)
|
||
with open(config_file) as f:
|
||
config = f.read()
|
||
data: dict = json.loads(config)
|
||
s2_dir = f"{exp_root}/{exp_name}"
|
||
os.makedirs(f"{s2_dir}/logs_s2_{version}", exist_ok=True)
|
||
if check_for_existance([s2_dir], is_train=True):
|
||
check_details([s2_dir], is_train=True)
|
||
if is_half is False:
|
||
data["train"]["fp16_run"] = False
|
||
batch_size = max(1, batch_size // 2)
|
||
data["train"]["batch_size"] = batch_size
|
||
data["train"]["epochs"] = total_epoch
|
||
data["train"]["text_low_lr_rate"] = text_low_lr_rate
|
||
data["train"]["pretrained_s2G"] = pretrained_s2G
|
||
data["train"]["pretrained_s2D"] = pretrained_s2D
|
||
data["train"]["if_save_latest"] = if_save_latest
|
||
data["train"]["if_save_every_weights"] = if_save_every_weights
|
||
data["train"]["save_every_epoch"] = save_every_epoch
|
||
data["train"]["grad_ckpt"] = if_grad_ckpt
|
||
data["train"]["lora_rank"] = lora_rank
|
||
data["model"]["version"] = version
|
||
data["data"]["exp_dir"] = data["s2_ckpt_dir"] = s2_dir
|
||
data["save_weight_dir"] = SoVITS_weight_version2root[version]
|
||
data["name"] = exp_name
|
||
data["version"] = version
|
||
tmp_config_path = f"{tmp}/tmp_s2.json"
|
||
with open(tmp_config_path, "w") as f:
|
||
f.write(json.dumps(data))
|
||
|
||
env = os.environ.copy()
|
||
env["CUDA_VISIBLE_DEVICES"] = str(gpu_numbers1Ba).strip("[]").replace(" ", "")
|
||
|
||
if version in ["v1", "v2", "v2Pro", "v2ProPlus"]:
|
||
cmd = [
|
||
python_exec,
|
||
"-s",
|
||
"GPT_SoVITS/s2_train.py",
|
||
"--config",
|
||
tmp_config_path,
|
||
]
|
||
else:
|
||
cmd = [
|
||
python_exec,
|
||
"-s",
|
||
"GPT_SoVITS/s2_train_v3_lora.py",
|
||
"--config",
|
||
tmp_config_path,
|
||
]
|
||
console.print(" ".join(cmd))
|
||
|
||
p = Popen(cmd, env=env)
|
||
p_train_SoVITS = p
|
||
|
||
yield (
|
||
process_info(process_name_sovits, "opened"),
|
||
gr.update(visible=False),
|
||
gr.update(visible=True),
|
||
gr.skip(),
|
||
gr.skip(),
|
||
)
|
||
|
||
code = p.wait()
|
||
p_train_SoVITS = None
|
||
|
||
if code == 0:
|
||
yield (
|
||
process_info(process_name_sovits, "finish"),
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
gr.skip(),
|
||
gr.skip(),
|
||
)
|
||
else:
|
||
yield (
|
||
process_info(process_name_sovits, "failed"),
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
gr.skip(),
|
||
gr.skip(),
|
||
)
|
||
return (gr.skip() for i in range(5))
|
||
|
||
SoVITS_dropdown_update, GPT_dropdown_update = change_choice()
|
||
|
||
yield (
|
||
gr.skip(),
|
||
gr.skip(),
|
||
gr.skip(),
|
||
SoVITS_dropdown_update,
|
||
GPT_dropdown_update,
|
||
)
|
||
else:
|
||
yield (
|
||
process_info(process_name_sovits, "occupy"),
|
||
gr.update(visible=False),
|
||
gr.update(visible=True),
|
||
gr.skip(),
|
||
gr.skip(),
|
||
)
|
||
|
||
|
||
def close1Ba():
|
||
global p_train_SoVITS
|
||
if p_train_SoVITS:
|
||
kill_process(p_train_SoVITS.pid, process_name_sovits)
|
||
p_train_SoVITS = None
|
||
return (
|
||
process_info(process_name_sovits, "closed"),
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
)
|
||
|
||
|
||
p_train_GPT: Popen | None = None
|
||
process_name_gpt = i18n("GPT训练")
|
||
|
||
|
||
def open1Bb(
|
||
batch_size,
|
||
total_epoch,
|
||
exp_name,
|
||
if_dpo,
|
||
if_save_latest,
|
||
if_save_every_weights,
|
||
save_every_epoch,
|
||
gpu_numbers,
|
||
pretrained_s1,
|
||
):
|
||
global p_train_GPT
|
||
if p_train_GPT is None:
|
||
exp_name = exp_name.rstrip(" ")
|
||
with open(
|
||
"GPT_SoVITS/configs/s1longer.yaml" if version == "v1" else "GPT_SoVITS/configs/s1longer-v2.yaml"
|
||
) as f:
|
||
config = f.read()
|
||
data: dict = yaml.load(config, Loader=yaml.FullLoader)
|
||
s1_dir = f"{exp_root}/{exp_name}"
|
||
os.makedirs(f"{s1_dir}/logs_s1", exist_ok=True)
|
||
if check_for_existance([s1_dir], is_train=True):
|
||
check_details([s1_dir], is_train=True)
|
||
|
||
if is_half is False or torch.mps.is_available():
|
||
data["train"]["precision"] = "32"
|
||
batch_size = max(1, batch_size // 2)
|
||
data["train"]["batch_size"] = batch_size
|
||
data["train"]["epochs"] = total_epoch
|
||
data["pretrained_s1"] = pretrained_s1
|
||
data["train"]["save_every_n_epoch"] = save_every_epoch
|
||
data["train"]["if_save_every_weights"] = if_save_every_weights
|
||
data["train"]["if_save_latest"] = if_save_latest
|
||
data["train"]["if_dpo"] = if_dpo
|
||
data["train"]["half_weights_save_dir"] = GPT_weight_version2root[version]
|
||
data["train"]["exp_name"] = exp_name
|
||
data["train_semantic_path"] = f"{s1_dir}/6-name2semantic.tsv"
|
||
data["train_phoneme_path"] = f"{s1_dir}/2-name2text.txt"
|
||
data["output_dir"] = f"{s1_dir}/logs_s1_{version}"
|
||
|
||
env = os.environ.copy()
|
||
env["CUDA_VISIBLE_DEVICES"] = str(gpu_numbers).strip("[]").replace(" ", "")
|
||
|
||
tmp_config_path = f"{tmp}/tmp_s1.yaml"
|
||
with open(tmp_config_path, "w") as f:
|
||
f.write(yaml.dump(data, default_flow_style=False))
|
||
|
||
cmd = [python_exec, "-s", "GPT_SoVITS/s1_train.py", "--config_file", tmp_config_path]
|
||
|
||
console.print(" ".join(cmd))
|
||
|
||
p = Popen(cmd, env=env)
|
||
p_train_GPT = p
|
||
|
||
yield (
|
||
process_info(process_name_gpt, "opened"),
|
||
gr.update(visible=False),
|
||
gr.update(visible=True),
|
||
gr.skip(),
|
||
gr.skip(),
|
||
)
|
||
|
||
code = p.wait()
|
||
p_train_GPT = None
|
||
|
||
if code == 0:
|
||
yield (
|
||
process_info(process_name_gpt, "finish"),
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
gr.skip(),
|
||
gr.skip(),
|
||
)
|
||
else:
|
||
yield (
|
||
process_info(process_name_gpt, "failed"),
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
gr.skip(),
|
||
gr.skip(),
|
||
)
|
||
return (gr.skip() for i in range(5))
|
||
|
||
SoVITS_dropdown_update, GPT_dropdown_update = change_choice()
|
||
|
||
yield (
|
||
gr.skip(),
|
||
gr.skip(),
|
||
gr.skip(),
|
||
SoVITS_dropdown_update,
|
||
GPT_dropdown_update,
|
||
)
|
||
else:
|
||
yield (
|
||
process_info(process_name_gpt, "occupy"),
|
||
gr.update(visible=False),
|
||
gr.update(visible=True),
|
||
gr.skip(),
|
||
gr.skip(),
|
||
)
|
||
|
||
|
||
def close1Bb():
|
||
global p_train_GPT
|
||
if p_train_GPT is not None:
|
||
kill_process(p_train_GPT.pid, process_name_gpt)
|
||
p_train_GPT = None
|
||
return (
|
||
process_info(process_name_gpt, "closed"),
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
)
|
||
|
||
|
||
ps_slice = []
|
||
process_name_slice = i18n("语音切分")
|
||
|
||
|
||
def open_slice(inp, opt_root, threshold, min_length, min_interval, hop_size, max_sil_kept, _max, alpha, n_parts):
|
||
global ps_slice
|
||
inp = my_utils.clean_path(inp)
|
||
opt_root = my_utils.clean_path(opt_root)
|
||
check_for_existance([inp])
|
||
if os.path.exists(inp) is False:
|
||
yield (
|
||
i18n("输入路径不存在"),
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
gr.skip(),
|
||
gr.skip(),
|
||
)
|
||
return
|
||
if os.path.isfile(inp):
|
||
n_parts = 1
|
||
elif os.path.isdir(inp):
|
||
pass
|
||
else:
|
||
yield (
|
||
i18n("输入路径存在但不可用"),
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
gr.skip(),
|
||
gr.skip(),
|
||
)
|
||
return
|
||
if ps_slice == []:
|
||
for i_part in range(n_parts):
|
||
cmd = '"%s" -s tools/slice_audio.py "%s" "%s" %s %s %s %s %s %s %s %s %s' % (
|
||
python_exec,
|
||
inp,
|
||
opt_root,
|
||
threshold,
|
||
min_length,
|
||
min_interval,
|
||
hop_size,
|
||
max_sil_kept,
|
||
_max,
|
||
alpha,
|
||
i_part,
|
||
n_parts,
|
||
)
|
||
console.print(cmd)
|
||
p = Popen(cmd, shell=True)
|
||
ps_slice.append(p)
|
||
yield (
|
||
process_info(process_name_slice, "opened"),
|
||
gr.update(visible=False),
|
||
gr.update(visible=True),
|
||
gr.skip(),
|
||
gr.skip(),
|
||
)
|
||
for p in ps_slice:
|
||
p.wait()
|
||
ps_slice = []
|
||
yield (
|
||
process_info(process_name_slice, "finish"),
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
gr.update(value=opt_root),
|
||
gr.update(value=opt_root),
|
||
)
|
||
else:
|
||
yield (
|
||
process_info(process_name_slice, "occupy"),
|
||
gr.update(visible=False),
|
||
gr.update(visible=True),
|
||
gr.skip(),
|
||
gr.skip(),
|
||
)
|
||
|
||
|
||
def close_slice():
|
||
global ps_slice
|
||
if ps_slice != []:
|
||
for p_slice in ps_slice:
|
||
try:
|
||
kill_process(p_slice.pid, process_name_slice)
|
||
except Exception as _:
|
||
traceback.print_exc()
|
||
ps_slice = []
|
||
return (
|
||
process_info(process_name_slice, "closed"),
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
)
|
||
|
||
|
||
ps1a: None | Popen = None
|
||
process_name_1a = i18n("文本分词与特征提取")
|
||
|
||
|
||
def open1a(
|
||
inp_text: str,
|
||
inp_wav_dir: str,
|
||
exp_name: str,
|
||
gpu_numbers: list[int],
|
||
bert_pretrained_dir: str,
|
||
version: str,
|
||
nproc: int = 1,
|
||
):
|
||
global ps1a
|
||
inp_text = my_utils.clean_path(inp_text)
|
||
inp_wav_dir = my_utils.clean_path(inp_wav_dir)
|
||
if check_for_existance([inp_text, inp_wav_dir], is_dataset_processing=True):
|
||
check_details([inp_text, inp_wav_dir], is_dataset_processing=True)
|
||
exp_name = exp_name.rstrip(" ")
|
||
if ps1a is None:
|
||
opt_dir = f"{exp_root}/{exp_name}"
|
||
|
||
env = os.environ.copy()
|
||
env["PYTHONPATH"] = os.getcwd()
|
||
|
||
# fmt: off
|
||
cmd = [
|
||
python_exec, "-s", "GPT_SoVITS/prepare_datasets/1-get-text.py",
|
||
"--inp-list", inp_text,
|
||
"--opt", opt_dir,
|
||
"--bert", bert_pretrained_dir,
|
||
"--version", version,
|
||
"--device", infer_device.type,
|
||
"--device-id", str(gpu_numbers).strip("[]").replace(" ",""),
|
||
"--nproc", str(nproc),
|
||
]
|
||
# fmt: on
|
||
|
||
if is_half:
|
||
cmd.append("--fp16")
|
||
else:
|
||
cmd.append("--no-fp16")
|
||
|
||
console.print(" ".join(cmd))
|
||
p = Popen(cmd, env=env)
|
||
|
||
yield (
|
||
process_info(process_name_1a, "running"),
|
||
gr.update(visible=False),
|
||
gr.update(visible=True),
|
||
)
|
||
|
||
code = p.wait()
|
||
ps1a = None
|
||
|
||
if code == 0:
|
||
yield (
|
||
process_info(process_name_1a, "finish"),
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
)
|
||
else:
|
||
yield (
|
||
process_info(process_name_1a, "failed"),
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
)
|
||
else:
|
||
yield (
|
||
process_info(process_name_1a, "occupy"),
|
||
gr.update(visible=False),
|
||
gr.update(visible=True),
|
||
)
|
||
|
||
|
||
def close1a():
|
||
global ps1a
|
||
if ps1a:
|
||
try:
|
||
kill_process(ps1a.pid, process_name_1a)
|
||
except Exception as _:
|
||
traceback.print_exc()
|
||
ps1a = None
|
||
return (
|
||
process_info(process_name_1a, "closed"),
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
)
|
||
|
||
|
||
ps1b: None | Popen = None
|
||
process_name_1b = i18n("语音自监督特征提取")
|
||
|
||
|
||
def open1b(
|
||
version: str,
|
||
inp_text: str,
|
||
inp_wav_dir: str,
|
||
exp_name: str,
|
||
gpu_numbers: list[int],
|
||
ssl_pretrained_dir: str,
|
||
nproc: int = 1,
|
||
):
|
||
global ps1b
|
||
inp_text = my_utils.clean_path(inp_text)
|
||
inp_wav_dir = my_utils.clean_path(inp_wav_dir)
|
||
if check_for_existance([inp_text, inp_wav_dir], is_dataset_processing=True):
|
||
check_details([inp_text, inp_wav_dir], is_dataset_processing=True)
|
||
exp_name = exp_name.rstrip(" ")
|
||
if ps1b is None:
|
||
opt_dir = f"{exp_root}/{exp_name}"
|
||
|
||
env = os.environ.copy()
|
||
env["PYTHONPATH"] = os.getcwd()
|
||
|
||
# fmt: off
|
||
cmd = [
|
||
python_exec, "-s", "GPT_SoVITS/prepare_datasets/2-get-hubert-sv-wav32k.py",
|
||
"--inp-list", inp_text,
|
||
"--opt", opt_dir,
|
||
"--cnhubert", ssl_pretrained_dir,
|
||
"--device", infer_device.type,
|
||
"--device-id", str(gpu_numbers).strip("[]").replace(" ",""),
|
||
"--nproc", str(nproc),
|
||
]
|
||
# fmt: on
|
||
|
||
if inp_wav_dir:
|
||
cmd.extend(["--wav-dir", inp_wav_dir])
|
||
|
||
if "Pro" in version:
|
||
cmd.extend(["--sv", sv_path])
|
||
|
||
if is_half:
|
||
cmd.append("--fp16")
|
||
else:
|
||
cmd.append("--no-fp16")
|
||
|
||
console.print(" ".join(cmd))
|
||
p = Popen(cmd, env=env)
|
||
|
||
ps1b = p
|
||
|
||
yield (
|
||
process_info(process_name_1b, "running"),
|
||
gr.update(visible=False),
|
||
gr.update(visible=True),
|
||
)
|
||
|
||
code = p.wait()
|
||
ps1b = None
|
||
|
||
if code == 0:
|
||
yield (
|
||
process_info(process_name_1b, "finish"),
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
)
|
||
else:
|
||
yield (
|
||
process_info(process_name_1b, "failed"),
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
)
|
||
else:
|
||
yield (
|
||
process_info(process_name_1b, "occupy"),
|
||
gr.update(visible=False),
|
||
gr.update(visible=True),
|
||
)
|
||
|
||
|
||
def close1b():
|
||
global ps1b
|
||
if ps1b:
|
||
try:
|
||
kill_process(ps1b.pid, process_name_1b)
|
||
except Exception as _:
|
||
traceback.print_exc()
|
||
ps1b = None
|
||
return (
|
||
process_info(process_name_1b, "closed"),
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
)
|
||
|
||
|
||
ps1c: None | Popen = None
|
||
process_name_1c = i18n("语义Token提取")
|
||
|
||
|
||
def open1c(
|
||
inp_text: str,
|
||
exp_name: str,
|
||
gpu_numbers: list[int],
|
||
pretrained_s2G_path: str,
|
||
nproc: int = 1,
|
||
):
|
||
global ps1c
|
||
inp_text = my_utils.clean_path(inp_text)
|
||
check_for_existance([inp_text], is_dataset_processing=True)
|
||
exp_name = exp_name.rstrip(" ")
|
||
if ps1c is None:
|
||
opt_dir = f"{exp_root}/{exp_name}"
|
||
|
||
env = os.environ.copy()
|
||
env["PYTHONPATH"] = os.getcwd()
|
||
|
||
# fmt: off
|
||
cmd = [
|
||
python_exec, "-s", "GPT_SoVITS/prepare_datasets/3-get-semantic.py",
|
||
"--inp-list", inp_text,
|
||
"--opt", opt_dir,
|
||
"--pretrained-s2g", pretrained_s2G_path,
|
||
"--device", infer_device.type,
|
||
"--device-id", str(gpu_numbers).strip("[]").replace(" ",""),
|
||
"--nproc", str(nproc),
|
||
]
|
||
# fmt: on
|
||
|
||
if is_half:
|
||
cmd.append("--fp16")
|
||
else:
|
||
cmd.append("--no-fp16")
|
||
|
||
console.print(" ".join(cmd))
|
||
p = Popen(cmd, env=env)
|
||
|
||
ps1c = p
|
||
|
||
yield (
|
||
process_info(process_name_1c, "running"),
|
||
gr.update(visible=False),
|
||
gr.update(visible=True),
|
||
)
|
||
|
||
code = p.wait()
|
||
ps1c = None
|
||
|
||
if code == 0:
|
||
yield (
|
||
process_info(process_name_1c, "finish"),
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
)
|
||
else:
|
||
yield (
|
||
process_info(process_name_1c, "failed"),
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
)
|
||
|
||
else:
|
||
yield (
|
||
process_info(process_name_1c, "occupy"),
|
||
gr.update(visible=False),
|
||
gr.update(visible=True),
|
||
)
|
||
|
||
|
||
def close1c():
|
||
global ps1c
|
||
if ps1c:
|
||
try:
|
||
kill_process(ps1c.pid, process_name_1c)
|
||
except Exception as _:
|
||
traceback.print_exc()
|
||
ps1c = None
|
||
return (
|
||
process_info(process_name_1c, "closed"),
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
)
|
||
|
||
|
||
ps1abc: list[None | Popen] = [None] * 3
|
||
process_name_1abc = i18n("训练集格式化一键三连")
|
||
|
||
|
||
def open1abc(
|
||
version: str,
|
||
inp_text: str,
|
||
inp_wav_dir: str,
|
||
exp_name: str,
|
||
gpu_numbers_1: list[int],
|
||
gpu_numbers_2: list[int],
|
||
gpu_numbers_3: list[int],
|
||
bert_pretrained_dir: str,
|
||
ssl_pretrained_dir: str,
|
||
pretrained_s2G_path: str,
|
||
nproc: int = 1,
|
||
):
|
||
global ps1abc
|
||
inp_text = my_utils.clean_path(inp_text)
|
||
inp_wav_dir = my_utils.clean_path(inp_wav_dir)
|
||
if check_for_existance([inp_text, inp_wav_dir], is_dataset_processing=True):
|
||
check_details([inp_text, inp_wav_dir], is_dataset_processing=True)
|
||
exp_name = exp_name.rstrip(" ")
|
||
if not all(ps1abc):
|
||
opt_dir = f"{exp_root}/{exp_name}"
|
||
|
||
env = os.environ.copy()
|
||
env["PYTHONPATH"] = os.getcwd()
|
||
|
||
# Step 1
|
||
# fmt: off
|
||
cmd_1 = [
|
||
python_exec, "-s", "GPT_SoVITS/prepare_datasets/1-get-text.py",
|
||
"--inp-list", inp_text,
|
||
"--opt", opt_dir,
|
||
"--bert", bert_pretrained_dir,
|
||
"--version", version,
|
||
"--device", infer_device.type,
|
||
"--device-id", str(gpu_numbers_1).strip("[]").replace(" ",""),
|
||
"--nproc", str(nproc),
|
||
]
|
||
# fmt: on
|
||
|
||
if is_half:
|
||
cmd_1.append("--fp16")
|
||
else:
|
||
cmd_1.append("--no-fp16")
|
||
|
||
console.print(" ".join(cmd_1))
|
||
p = Popen(cmd_1, env=env)
|
||
ps1abc[0] = p
|
||
|
||
yield (
|
||
i18n("进度") + ": 1A-Doing",
|
||
gr.update(visible=False),
|
||
gr.update(visible=True),
|
||
)
|
||
|
||
code = p.wait()
|
||
ps1abc[0] = None
|
||
|
||
if code == 0:
|
||
yield (
|
||
i18n("进度") + ": 1A-Done",
|
||
gr.update(visible=False),
|
||
gr.update(visible=True),
|
||
)
|
||
else:
|
||
yield (
|
||
i18n("进度") + ": 1A-Failed",
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
)
|
||
return (gr.skip() for i in range(3))
|
||
|
||
# Step 2
|
||
# fmt: off
|
||
cmd_2 = [
|
||
python_exec, "-s", "GPT_SoVITS/prepare_datasets/2-get-hubert-sv-wav32k.py",
|
||
"--inp-list", inp_text,
|
||
"--opt", opt_dir,
|
||
"--cnhubert", ssl_pretrained_dir,
|
||
"--device", infer_device.type,
|
||
"--device-id", str(gpu_numbers_2).strip("[]").replace(" ",""),
|
||
"--nproc", str(nproc),
|
||
]
|
||
# fmt: on
|
||
|
||
if inp_wav_dir:
|
||
cmd_2.extend(["--wav-dir", inp_wav_dir])
|
||
|
||
if "Pro" in version:
|
||
cmd_2.extend(["--sv", sv_path])
|
||
|
||
if is_half:
|
||
cmd_2.append("--fp16")
|
||
else:
|
||
cmd_2.append("--no-fp16")
|
||
|
||
console.print(" ".join(cmd_2))
|
||
p = Popen(cmd_2, env=env)
|
||
ps1abc[1] = p
|
||
|
||
yield (
|
||
i18n("进度") + ": 1A-Done, 1B-Doing",
|
||
gr.update(visible=False),
|
||
gr.update(visible=True),
|
||
)
|
||
|
||
code = p.wait()
|
||
ps1abc[1] = None
|
||
|
||
if code == 0:
|
||
yield (
|
||
i18n("进度") + ": 1A-Done, 1B-Done",
|
||
gr.update(visible=False),
|
||
gr.update(visible=True),
|
||
)
|
||
else:
|
||
yield (
|
||
i18n("进度") + ": 1A-Done, 1B-Failed",
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
)
|
||
return (gr.skip() for i in range(3))
|
||
|
||
# Step 3
|
||
# fmt: off
|
||
cmd_3 = [
|
||
python_exec, "-s", "GPT_SoVITS/prepare_datasets/3-get-semantic.py",
|
||
"--inp-list", inp_text,
|
||
"--opt", opt_dir,
|
||
"--pretrained-s2g", pretrained_s2G_path,
|
||
"--device", infer_device.type,
|
||
"--device-id", str(gpu_numbers_3).strip("[]").replace(" ",""),
|
||
"--nproc", str(nproc),
|
||
]
|
||
# fmt: on
|
||
|
||
if is_half:
|
||
cmd_3.append("--fp16")
|
||
else:
|
||
cmd_3.append("--no-fp16")
|
||
|
||
console.print(" ".join(cmd_3))
|
||
p = Popen(cmd_3, env=env)
|
||
ps1abc[2] = p
|
||
|
||
yield (
|
||
i18n("进度") + ": 1A-Done, 1B-Done, 1C-Doing",
|
||
gr.update(visible=False),
|
||
gr.update(visible=True),
|
||
)
|
||
|
||
code = p.wait()
|
||
ps1abc[2] = None
|
||
|
||
if code == 0:
|
||
yield (
|
||
process_info(process_name_1abc, "finish"),
|
||
gr.update(visible=False),
|
||
gr.update(visible=True),
|
||
)
|
||
else:
|
||
yield (
|
||
i18n("进度") + ": 1A-Done, 1B-Done, 1C-Failed",
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
)
|
||
return (gr.skip() for i in range(3))
|
||
|
||
else:
|
||
yield (
|
||
process_info(process_name_1abc, "occupy"),
|
||
gr.update(visible=False),
|
||
gr.update(visible=True),
|
||
)
|
||
|
||
|
||
def close1abc():
|
||
global ps1abc
|
||
if any(ps1abc):
|
||
for p1abc in ps1abc:
|
||
if p1abc is None:
|
||
continue
|
||
try:
|
||
kill_process(p1abc.pid, process_name_1abc)
|
||
except Exception as _:
|
||
traceback.print_exc()
|
||
ps1abc = [None] * 3
|
||
return (
|
||
process_info(process_name_1abc, "closed"),
|
||
gr.update(visible=True),
|
||
gr.update(visible=False),
|
||
)
|
||
|
||
|
||
def switch_version(version_):
|
||
os.environ["version"] = version_
|
||
global version
|
||
version = version_
|
||
if pretrained_sovits_name[version] != "" and pretrained_gpt_name[version] != "":
|
||
...
|
||
else:
|
||
gr.Warning(i18n("未下载模型") + ": " + version.upper())
|
||
set_default()
|
||
return (
|
||
gr.update(value=pretrained_sovits_name[version]),
|
||
gr.update(value=pretrained_sovits_name[version].replace("s2G", "s2D")),
|
||
gr.update(value=pretrained_gpt_name[version]),
|
||
gr.update(value=pretrained_gpt_name[version]),
|
||
gr.update(value=pretrained_sovits_name[version]),
|
||
gr.update(value=default_batch_size, maximum=default_max_batch_size),
|
||
gr.update(value=default_sovits_epoch, maximum=max_sovits_epoch),
|
||
gr.update(value=default_sovits_save_every_epoch, maximum=max_sovits_save_every_epoch),
|
||
gr.update(visible=False if version in v3v4set else True),
|
||
gr.update(
|
||
visible=False if version not in v3v4set else True,
|
||
value=False if not if_force_ckpt else True,
|
||
interactive=True if not if_force_ckpt else False,
|
||
),
|
||
gr.update(value=False, interactive=True),
|
||
gr.update(visible=True if version in v3v4set else False),
|
||
)
|
||
|
||
|
||
def sync(text):
|
||
return gr.update(value=text)
|
||
|
||
|
||
def changeBackend(flag: bool):
|
||
if flag:
|
||
return gr.update(choices=["Torch Varlen"], value="Torch Varlen")
|
||
else:
|
||
return gr.update(choices=backends_gradio, value=backends_gradio[-1][-1])
|
||
|
||
|
||
GPU_INDEX.add(0)
|
||
GPU_INDEX_LIST = list(GPU_INDEX)
|
||
GPU_INDEX_LIST.sort()
|
||
with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False, js=js, css=css) as app:
|
||
gr.HTML(
|
||
top_html.format(
|
||
i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.")
|
||
+ i18n("如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.")
|
||
),
|
||
elem_classes="markdown",
|
||
)
|
||
|
||
with gr.Tabs():
|
||
with gr.TabItem("0-" + i18n("前置数据集获取工具")):
|
||
with gr.Accordion(label="0a-" + i18n("UVR5人声伴奏分离&去混响去延迟工具")):
|
||
with gr.Row(equal_height=True):
|
||
with gr.Column(scale=3):
|
||
with gr.Row(equal_height=True):
|
||
uvr5_info = gr.Textbox(label=process_info(process_name_uvr5, "info"))
|
||
open_uvr5 = gr.Button(
|
||
value=process_info(process_name_uvr5, "open"), variant="primary", visible=True
|
||
)
|
||
close_uvr5 = gr.Button(
|
||
value=process_info(process_name_uvr5, "close"), variant="primary", visible=False
|
||
)
|
||
|
||
with gr.Accordion(label="0b-" + i18n("语音切分工具")):
|
||
with gr.Row(equal_height=True):
|
||
with gr.Column(scale=3):
|
||
with gr.Row(equal_height=True):
|
||
slice_inp_path = gr.Textbox(
|
||
label=i18n("音频自动切分输入路径,可文件可文件夹"),
|
||
placeholder="D:/InputAudioFolder"
|
||
if platform.system() == "Windows"
|
||
else "~/InputAudioFolder",
|
||
)
|
||
slice_opt_root = gr.Textbox(
|
||
label=i18n("切分后的子音频的输出根目录"), value="output/slicer_opt"
|
||
)
|
||
with gr.Row(equal_height=True):
|
||
threshold = gr.Textbox(
|
||
label=i18n("threshold:音量小于这个值视作静音的备选切割点"), value="-34"
|
||
)
|
||
min_length = gr.Textbox(
|
||
label=i18n("min_length:每段最小多长,如果第一段太短一直和后面段连起来直到超过这个值"),
|
||
value="4000",
|
||
)
|
||
min_interval = gr.Textbox(label=i18n("min_interval:最短切割间隔"), value="300")
|
||
hop_size = gr.Textbox(
|
||
label=i18n("hop_size:怎么算音量曲线,越小精度越大计算量越高(不是精度越大效果越好)"),
|
||
value="10",
|
||
)
|
||
max_sil_kept = gr.Textbox(label=i18n("max_sil_kept:切完后静音最多留多长"), value="500")
|
||
with gr.Row(equal_height=True):
|
||
_max = gr.Slider(
|
||
minimum=0,
|
||
maximum=1,
|
||
step=0.05,
|
||
label=i18n("max:归一化后最大值多少"),
|
||
value=0.9,
|
||
interactive=True,
|
||
)
|
||
alpha = gr.Slider(
|
||
minimum=0,
|
||
maximum=1,
|
||
step=0.05,
|
||
label=i18n("alpha_mix:混多少比例归一化后音频进来"),
|
||
value=0.25,
|
||
interactive=True,
|
||
)
|
||
with gr.Row(equal_height=True):
|
||
n_process = gr.Slider(
|
||
minimum=1,
|
||
maximum=n_cpu,
|
||
step=1,
|
||
label=i18n("切割使用的进程数"),
|
||
value=4,
|
||
interactive=True,
|
||
)
|
||
slicer_info = gr.Textbox(label=process_info(process_name_slice, "info"))
|
||
open_slicer_button = gr.Button(
|
||
value=process_info(process_name_slice, "open"), variant="primary", visible=True
|
||
)
|
||
close_slicer_button = gr.Button(
|
||
value=process_info(process_name_slice, "close"), variant="primary", visible=False
|
||
)
|
||
|
||
with gr.Accordion(label="0c-" + i18n("语音识别工具")):
|
||
with gr.Row(equal_height=True):
|
||
with gr.Column(scale=3):
|
||
with gr.Row(equal_height=True):
|
||
asr_inp_dir = gr.Textbox(
|
||
label=i18n("输入文件夹路径"),
|
||
value="output/silcer_opt",
|
||
interactive=True,
|
||
)
|
||
asr_opt_dir = gr.Textbox(
|
||
label=i18n("输出文件夹路径"), value="output/asr_opt", interactive=True
|
||
)
|
||
with gr.Row(equal_height=True):
|
||
asr_model = gr.Dropdown(
|
||
label=i18n("ASR 模型"),
|
||
choices=list(asr_dict.keys()),
|
||
interactive=True,
|
||
value="达摩 ASR (中文)",
|
||
)
|
||
asr_size = gr.Dropdown(
|
||
label=i18n("ASR 模型尺寸"), choices=["large"], interactive=True, value="large"
|
||
)
|
||
asr_lang = gr.Dropdown(
|
||
label=i18n("ASR 语言设置"), choices=["zh", "yue"], interactive=True, value="zh"
|
||
)
|
||
asr_precision = gr.Dropdown(
|
||
label=i18n("数据类型精度"), choices=["float32"], interactive=True, value="float32"
|
||
)
|
||
with gr.Row(equal_height=True):
|
||
asr_info = gr.Textbox(label=process_info(process_name_asr, "info"))
|
||
open_asr_button = gr.Button(
|
||
value=process_info(process_name_asr, "open"), variant="primary", visible=True
|
||
)
|
||
close_asr_button = gr.Button(
|
||
value=process_info(process_name_asr, "close"), variant="primary", visible=False
|
||
)
|
||
|
||
def change_lang_choices(key): # 根据选择的模型修改可选的语言
|
||
return gr.update(value=asr_dict[key]["lang"][0], choices=asr_dict[key]["lang"])
|
||
|
||
def change_size_choices(key): # 根据选择的模型修改可选的模型尺寸
|
||
return gr.update(value=asr_dict[key]["size"][-1], choices=asr_dict[key]["size"])
|
||
|
||
def change_precision_choices(key): # 根据选择的模型修改可选的语言
|
||
if key == "Faster Whisper (多语种)":
|
||
if default_batch_size <= 4:
|
||
precision = "int8"
|
||
elif is_half:
|
||
precision = "float16"
|
||
else:
|
||
precision = "float32"
|
||
else:
|
||
precision = "float32"
|
||
return gr.update(value=precision, choices=asr_dict[key]["precision"])
|
||
|
||
asr_model.change(change_lang_choices, [asr_model], [asr_lang])
|
||
asr_model.change(change_size_choices, [asr_model], [asr_size])
|
||
asr_model.change(change_precision_choices, [asr_model], [asr_precision])
|
||
|
||
with gr.Accordion(label="0d-" + i18n("语音文本校对标注工具")):
|
||
with gr.Row(equal_height=True):
|
||
with gr.Column(scale=3):
|
||
with gr.Row(equal_height=True):
|
||
path_list = gr.Textbox(
|
||
label=i18n("标注文件路径 (含文件后缀 *.list)"),
|
||
value="output/asr_opt/slicer_opt.list",
|
||
interactive=True,
|
||
)
|
||
label_info = gr.Textbox(label=process_info(process_name_subfix, "info"))
|
||
open_label = gr.Button(
|
||
value=process_info(process_name_subfix, "open"), variant="primary", visible=True
|
||
)
|
||
close_label = gr.Button(
|
||
value=process_info(process_name_subfix, "close"), variant="primary", visible=False
|
||
)
|
||
|
||
open_label.click(change_label, [path_list], [label_info, open_label, close_label])
|
||
close_label.click(change_label, [path_list], [label_info, open_label, close_label])
|
||
open_uvr5.click(change_uvr5, [], [uvr5_info, open_uvr5, close_uvr5])
|
||
close_uvr5.click(change_uvr5, [], [uvr5_info, open_uvr5, close_uvr5])
|
||
|
||
with gr.TabItem(i18n("1-GPT-SoVITS-TTS")):
|
||
with gr.Accordion(i18n("微调模型信息")):
|
||
with gr.Row(equal_height=True):
|
||
with gr.Column():
|
||
exp_name = gr.Textbox(
|
||
label=i18n("实验/模型名"),
|
||
value="xxx",
|
||
interactive=True,
|
||
scale=3,
|
||
)
|
||
with gr.Column():
|
||
gpu_info_box = gr.Textbox(
|
||
label=i18n("显卡信息"),
|
||
value=gpu_info,
|
||
visible=True,
|
||
interactive=False,
|
||
scale=5,
|
||
)
|
||
with gr.Column():
|
||
version_checkbox = gr.Dropdown(
|
||
label=i18n("训练模型的版本"),
|
||
value=version,
|
||
choices=[
|
||
("V1", "v1"),
|
||
("V2", "v2"),
|
||
("V4", "v4"),
|
||
("V2 Pro", "v2Pro"),
|
||
("V2 Pro Plus", "v2ProPlus"),
|
||
],
|
||
scale=5,
|
||
)
|
||
with gr.Column():
|
||
n_processes = gr.Slider(0, 6, 2, step=1, label=i18n("每卡预处理进程数"))
|
||
|
||
with gr.Accordion(label=i18n("预训练模型路径"), open=False):
|
||
with gr.Row(equal_height=True):
|
||
with gr.Row(equal_height=True):
|
||
pretrained_s1 = gr.Textbox(
|
||
label=i18n("预训练GPT模型路径"),
|
||
value=pretrained_gpt_name[version],
|
||
interactive=True,
|
||
lines=1,
|
||
max_lines=1,
|
||
scale=3,
|
||
)
|
||
pretrained_s2G = gr.Textbox(
|
||
label=i18n("预训练SoVITS-G模型路径"),
|
||
value=pretrained_sovits_name[version],
|
||
interactive=True,
|
||
lines=1,
|
||
max_lines=1,
|
||
scale=5,
|
||
)
|
||
pretrained_s2D = gr.Textbox(
|
||
label=i18n("预训练SoVITS-D模型路径"),
|
||
value=pretrained_sovits_name[version].replace("s2G", "s2D"),
|
||
interactive=True,
|
||
lines=1,
|
||
max_lines=1,
|
||
scale=5,
|
||
)
|
||
|
||
with gr.TabItem("1A-" + i18n("训练集格式化工具")):
|
||
with gr.Accordion(label=i18n("输出logs/实验名目录下应有23456开头的文件和文件夹")):
|
||
with gr.Row(equal_height=True):
|
||
with gr.Row(equal_height=True):
|
||
inp_text = gr.Textbox(
|
||
label=i18n("*文本标注文件"),
|
||
value=r"output/asr_opt/slicer_opt.list",
|
||
interactive=True,
|
||
scale=10,
|
||
)
|
||
with gr.Row(equal_height=True):
|
||
inp_wav_dir = gr.Textbox(
|
||
label=i18n("*训练集音频文件目录"),
|
||
# value=r"D:\RVC1006\GPT-SoVITS\raw\xxx",
|
||
interactive=True,
|
||
placeholder=i18n(
|
||
"填切割后音频所在目录!读取的音频文件完整路径=该目录-拼接-list文件里波形对应的文件名(不是全路径)。如果留空则使用.list文件里的绝对全路径。"
|
||
),
|
||
scale=10,
|
||
)
|
||
|
||
with gr.Accordion(label="1Aa-" + process_name_1a):
|
||
with gr.Row(equal_height=True):
|
||
with gr.Row(equal_height=True):
|
||
gpu_numbers1a = gr.Dropdown(
|
||
label=i18n("GPU卡号"),
|
||
choices=GPU_INDEX_LIST,
|
||
value=GPU_INDEX_LIST,
|
||
interactive=True,
|
||
multiselect=True,
|
||
allow_custom_value=False,
|
||
)
|
||
with gr.Row(equal_height=True):
|
||
bert_pretrained_dir = gr.Textbox(
|
||
label=i18n("预训练中文BERT模型路径"),
|
||
value="GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
|
||
interactive=False,
|
||
lines=2,
|
||
)
|
||
with gr.Row(equal_height=True):
|
||
button1a_open = gr.Button(
|
||
value=process_info(process_name_1a, "open"), variant="primary", visible=True
|
||
)
|
||
button1a_close = gr.Button(
|
||
value=process_info(process_name_1a, "close"), variant="primary", visible=False
|
||
)
|
||
with gr.Row(equal_height=True):
|
||
info1a = gr.Textbox(label=process_info(process_name_1a, "info"))
|
||
|
||
with gr.Accordion(label="1Ab-" + process_name_1b):
|
||
with gr.Row(equal_height=True):
|
||
with gr.Row(equal_height=True):
|
||
gpu_numbers1b = gr.Dropdown(
|
||
label=i18n("GPU卡号"),
|
||
choices=GPU_INDEX_LIST,
|
||
value=GPU_INDEX_LIST,
|
||
interactive=True,
|
||
multiselect=True,
|
||
allow_custom_value=False,
|
||
)
|
||
with gr.Row(equal_height=True):
|
||
cnhubert_base_dir = gr.Textbox(
|
||
label=i18n("预训练SSL模型路径"),
|
||
value="GPT_SoVITS/pretrained_models/chinese-hubert-base",
|
||
interactive=False,
|
||
lines=2,
|
||
)
|
||
with gr.Row(equal_height=True):
|
||
button1b_open = gr.Button(
|
||
value=process_info(process_name_1b, "open"), variant="primary", visible=True
|
||
)
|
||
button1b_close = gr.Button(
|
||
value=process_info(process_name_1b, "close"), variant="primary", visible=False
|
||
)
|
||
with gr.Row(equal_height=True):
|
||
info1b = gr.Textbox(label=process_info(process_name_1b, "info"))
|
||
|
||
with gr.Accordion(label="1Ac-" + process_name_1c):
|
||
with gr.Row(equal_height=True):
|
||
with gr.Row(equal_height=True):
|
||
gpu_numbers1c = gr.Dropdown(
|
||
label=i18n("GPU卡号"),
|
||
choices=GPU_INDEX_LIST,
|
||
value=GPU_INDEX_LIST,
|
||
interactive=True,
|
||
multiselect=True,
|
||
allow_custom_value=False,
|
||
)
|
||
with gr.Row(equal_height=True):
|
||
pretrained_s2G_ = gr.Textbox(
|
||
label=i18n("预训练SoVITS-G模型路径"),
|
||
value=pretrained_sovits_name[version],
|
||
interactive=False,
|
||
lines=2,
|
||
)
|
||
with gr.Row(equal_height=True):
|
||
button1c_open = gr.Button(
|
||
value=process_info(process_name_1c, "open"), variant="primary", visible=True
|
||
)
|
||
button1c_close = gr.Button(
|
||
value=process_info(process_name_1c, "close"), variant="primary", visible=False
|
||
)
|
||
with gr.Row(equal_height=True):
|
||
info1c = gr.Textbox(label=process_info(process_name_1c, "info"))
|
||
|
||
with gr.Accordion(label="1Aabc-" + process_name_1abc):
|
||
with gr.Row(equal_height=True):
|
||
with gr.Row(equal_height=True):
|
||
button1abc_open = gr.Button(
|
||
value=process_info(process_name_1abc, "open"), variant="primary", visible=True
|
||
)
|
||
button1abc_close = gr.Button(
|
||
value=process_info(process_name_1abc, "close"), variant="primary", visible=False
|
||
)
|
||
with gr.Row(equal_height=True):
|
||
info1abc = gr.Textbox(label=process_info(process_name_1abc, "info"))
|
||
|
||
pretrained_s2G.change(sync, [pretrained_s2G], [pretrained_s2G_])
|
||
open_asr_button.click(
|
||
open_asr,
|
||
[asr_inp_dir, asr_opt_dir, asr_model, asr_size, asr_lang, asr_precision],
|
||
[asr_info, open_asr_button, close_asr_button, path_list, inp_text, inp_wav_dir],
|
||
)
|
||
close_asr_button.click(close_asr, [], [asr_info, open_asr_button, close_asr_button])
|
||
open_slicer_button.click(
|
||
open_slice,
|
||
[
|
||
slice_inp_path,
|
||
slice_opt_root,
|
||
threshold,
|
||
min_length,
|
||
min_interval,
|
||
hop_size,
|
||
max_sil_kept,
|
||
_max,
|
||
alpha,
|
||
n_process,
|
||
],
|
||
[slicer_info, open_slicer_button, close_slicer_button, asr_inp_dir, inp_wav_dir],
|
||
)
|
||
close_slicer_button.click(close_slice, [], [slicer_info, open_slicer_button, close_slicer_button])
|
||
|
||
button1a_open.click(
|
||
open1a,
|
||
[inp_text, inp_wav_dir, exp_name, gpu_numbers1a, bert_pretrained_dir, version_checkbox, n_processes],
|
||
[info1a, button1a_open, button1a_close],
|
||
)
|
||
button1a_close.click(close1a, [], [info1a, button1a_open, button1a_close])
|
||
button1b_open.click(
|
||
open1b,
|
||
[version_checkbox, inp_text, inp_wav_dir, exp_name, gpu_numbers1b, cnhubert_base_dir, n_processes],
|
||
[info1b, button1b_open, button1b_close],
|
||
)
|
||
button1b_close.click(close1b, [], [info1b, button1b_open, button1b_close])
|
||
button1c_open.click(
|
||
open1c,
|
||
[inp_text, exp_name, gpu_numbers1c, pretrained_s2G, n_processes],
|
||
[info1c, button1c_open, button1c_close],
|
||
)
|
||
button1c_close.click(close1c, [], [info1c, button1c_open, button1c_close])
|
||
button1abc_open.click(
|
||
open1abc,
|
||
[
|
||
version_checkbox,
|
||
inp_text,
|
||
inp_wav_dir,
|
||
exp_name,
|
||
gpu_numbers1a,
|
||
gpu_numbers1b,
|
||
gpu_numbers1c,
|
||
bert_pretrained_dir,
|
||
cnhubert_base_dir,
|
||
pretrained_s2G,
|
||
n_processes,
|
||
],
|
||
[info1abc, button1abc_open, button1abc_close],
|
||
)
|
||
button1abc_close.click(close1abc, [], [info1abc, button1abc_open, button1abc_close])
|
||
|
||
with gr.TabItem("1B-" + i18n("微调训练")):
|
||
with gr.Accordion(label="1Ba-" + i18n("SoVITS 训练: 模型权重文件在 SoVITS_weights/")):
|
||
with gr.Row(equal_height=True):
|
||
batch_size = gr.Slider(
|
||
minimum=1,
|
||
maximum=default_max_batch_size,
|
||
step=1,
|
||
label=i18n("每张显卡的batch_size"),
|
||
value=default_batch_size,
|
||
interactive=True,
|
||
)
|
||
total_epoch = gr.Slider(
|
||
minimum=1,
|
||
maximum=max_sovits_epoch,
|
||
step=1,
|
||
label=i18n("总训练轮数total_epoch,不建议太高"),
|
||
value=default_sovits_epoch,
|
||
interactive=True,
|
||
)
|
||
with gr.Column(scale=2):
|
||
if_save_latest = gr.Checkbox(
|
||
label=i18n("是否仅保存最新的权重文件以节省硬盘空间"),
|
||
value=True,
|
||
interactive=True,
|
||
show_label=True,
|
||
)
|
||
if_save_every_weights = gr.Checkbox(
|
||
label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"),
|
||
value=True,
|
||
interactive=True,
|
||
show_label=True,
|
||
)
|
||
if_grad_ckpt = gr.Checkbox(
|
||
label="v3是否开启梯度检查点节省显存占用",
|
||
value=False,
|
||
interactive=True if version in v3v4set else False,
|
||
show_label=True,
|
||
visible=False,
|
||
) # 只有V3s2可以用
|
||
with gr.Row(equal_height=True):
|
||
text_low_lr_rate = gr.Slider(
|
||
minimum=0.2,
|
||
maximum=0.6,
|
||
step=0.05,
|
||
label=i18n("文本模块学习率权重"),
|
||
value=0.4,
|
||
visible=True if version not in v3v4set else False,
|
||
) # v3v4 not need
|
||
lora_rank = gr.Radio(
|
||
label=i18n("LoRA秩"),
|
||
value="32",
|
||
choices=["16", "32", "64", "128"],
|
||
visible=True if version in v3v4set else False,
|
||
) # v1v2 not need
|
||
save_every_epoch = gr.Slider(
|
||
minimum=1,
|
||
maximum=max_sovits_save_every_epoch,
|
||
step=1,
|
||
label=i18n("保存频率save_every_epoch"),
|
||
value=default_sovits_save_every_epoch,
|
||
interactive=True,
|
||
)
|
||
with gr.Column(scale=3):
|
||
gpu_numbers1Ba = gr.Dropdown(
|
||
label=i18n("GPU卡号"),
|
||
choices=GPU_INDEX_LIST,
|
||
value=GPU_INDEX_LIST,
|
||
interactive=True,
|
||
multiselect=True,
|
||
allow_custom_value=False,
|
||
)
|
||
with gr.Row(equal_height=True):
|
||
with gr.Column():
|
||
button1Ba_open = gr.Button(
|
||
value=process_info(process_name_sovits, "open"), variant="primary", visible=True
|
||
)
|
||
button1Ba_close = gr.Button(
|
||
value=process_info(process_name_sovits, "close"), variant="primary", visible=False
|
||
)
|
||
with gr.Column():
|
||
info1Ba = gr.Textbox(label=process_info(process_name_sovits, "info"))
|
||
with gr.Accordion(label="1Bb-" + i18n("GPT 训练: 模型权重文件在 GPT_weights/")):
|
||
with gr.Row(equal_height=True):
|
||
batch_size1Bb = gr.Slider(
|
||
minimum=1,
|
||
maximum=40,
|
||
step=1,
|
||
label=i18n("每张显卡的batch_size"),
|
||
value=default_batch_size_s1,
|
||
interactive=True,
|
||
)
|
||
total_epoch1Bb = gr.Slider(
|
||
minimum=2,
|
||
maximum=50,
|
||
step=1,
|
||
label=i18n("总训练轮数total_epoch"),
|
||
value=15,
|
||
interactive=True,
|
||
)
|
||
with gr.Column(scale=2):
|
||
if_save_latest1Bb = gr.Checkbox(
|
||
label=i18n("是否仅保存最新的权重文件以节省硬盘空间"),
|
||
value=True,
|
||
interactive=True,
|
||
show_label=True,
|
||
)
|
||
if_save_every_weights1Bb = gr.Checkbox(
|
||
label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"),
|
||
value=True,
|
||
interactive=True,
|
||
show_label=True,
|
||
)
|
||
with gr.Row(equal_height=True):
|
||
# with gr.Column():
|
||
save_every_epoch1Bb = gr.Slider(
|
||
minimum=1,
|
||
maximum=50,
|
||
step=1,
|
||
label=i18n("保存频率save_every_epoch"),
|
||
value=5,
|
||
interactive=True,
|
||
)
|
||
# with gr.Column():
|
||
if_dpo = gr.Checkbox(
|
||
label=i18n("是否开启DPO训练选项(实验性)"),
|
||
value=False,
|
||
interactive=True,
|
||
show_label=True,
|
||
)
|
||
with gr.Column(scale=2):
|
||
gpu_numbers1Bb = gr.Dropdown(
|
||
label=i18n("GPU卡号"),
|
||
choices=GPU_INDEX_LIST,
|
||
value=GPU_INDEX_LIST,
|
||
interactive=True,
|
||
multiselect=True,
|
||
allow_custom_value=False,
|
||
)
|
||
with gr.Row(equal_height=True):
|
||
with gr.Column():
|
||
with gr.Row(equal_height=True):
|
||
button1Bb_open = gr.Button(
|
||
value=process_info(process_name_gpt, "open"), variant="primary", visible=True
|
||
)
|
||
button1Bb_close = gr.Button(
|
||
value=process_info(process_name_gpt, "close"), variant="primary", visible=False
|
||
)
|
||
with gr.Column():
|
||
info1Bb = gr.Textbox(label=process_info(process_name_gpt, "info"))
|
||
|
||
button1Ba_close.click(close1Ba, [], [info1Ba, button1Ba_open, button1Ba_close])
|
||
button1Bb_close.click(close1Bb, [], [info1Bb, button1Bb_open, button1Bb_close])
|
||
|
||
with gr.TabItem("1C-" + i18n("推理")):
|
||
gr.Markdown(
|
||
value=i18n(
|
||
"选择训练完存放在SoVITS_weights和GPT_weights下的模型。默认的几个是底模,体验5秒Zero Shot TTS不训练推理用。"
|
||
)
|
||
)
|
||
with gr.Row(equal_height=True):
|
||
with gr.Column(scale=2):
|
||
with gr.Row(equal_height=True):
|
||
with gr.Column():
|
||
GPT_dropdown = gr.Dropdown(
|
||
label=i18n("GPT模型列表"),
|
||
choices=GPT_names,
|
||
value=GPT_names[0][-1],
|
||
interactive=True,
|
||
)
|
||
with gr.Column():
|
||
SoVITS_dropdown = gr.Dropdown(
|
||
label=i18n("SoVITS模型列表"),
|
||
choices=SoVITS_names,
|
||
value=SoVITS_names[0][-1],
|
||
interactive=True,
|
||
)
|
||
with gr.Column(scale=2):
|
||
with gr.Row(equal_height=True):
|
||
gpu_number_1C = gr.Dropdown(
|
||
label=i18n("GPU卡号"),
|
||
choices=GPU_INDEX_LIST,
|
||
value=infer_device.index,
|
||
interactive=True,
|
||
multiselect=False,
|
||
allow_custom_value=False,
|
||
)
|
||
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary")
|
||
refresh_button.click(fn=change_choice, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
|
||
with gr.Row(equal_height=True):
|
||
with gr.Row(equal_height=True):
|
||
with gr.Column():
|
||
batched_infer_enabled = gr.Checkbox(
|
||
label=i18n("启用并行推理版本"), value=False, interactive=True, show_label=True
|
||
)
|
||
with gr.Column():
|
||
backends_dropdown = gr.Dropdown(
|
||
choices=backends_gradio,
|
||
label=i18n("推理后端"),
|
||
value=backends_gradio[-1][-1],
|
||
interactive=True,
|
||
)
|
||
with gr.Row(equal_height=True):
|
||
tts_info = gr.Textbox(label=process_info(process_name_tts, "info"))
|
||
open_tts = gr.Button(
|
||
value=process_info(process_name_tts, "open"), variant="primary", visible=True
|
||
)
|
||
close_tts = gr.Button(
|
||
value=process_info(process_name_tts, "close"), variant="primary", visible=False
|
||
)
|
||
|
||
batched_infer_enabled.change(
|
||
changeBackend,
|
||
[batched_infer_enabled],
|
||
[backends_dropdown],
|
||
)
|
||
open_tts.click(
|
||
change_tts_inference,
|
||
[
|
||
gpu_number_1C,
|
||
GPT_dropdown,
|
||
SoVITS_dropdown,
|
||
batched_infer_enabled,
|
||
backends_dropdown,
|
||
],
|
||
[tts_info, open_tts, close_tts],
|
||
)
|
||
close_tts.click(
|
||
change_tts_inference,
|
||
[
|
||
gpu_number_1C,
|
||
GPT_dropdown,
|
||
SoVITS_dropdown,
|
||
batched_infer_enabled,
|
||
backends_dropdown,
|
||
],
|
||
[tts_info, open_tts, close_tts],
|
||
)
|
||
button1Ba_open.click(
|
||
open1Ba,
|
||
[
|
||
version_checkbox,
|
||
batch_size,
|
||
total_epoch,
|
||
exp_name,
|
||
text_low_lr_rate,
|
||
if_save_latest,
|
||
if_save_every_weights,
|
||
save_every_epoch,
|
||
gpu_numbers1Ba,
|
||
pretrained_s2G,
|
||
pretrained_s2D,
|
||
if_grad_ckpt,
|
||
lora_rank,
|
||
],
|
||
[info1Ba, button1Ba_open, button1Ba_close, SoVITS_dropdown, GPT_dropdown],
|
||
)
|
||
button1Bb_open.click(
|
||
open1Bb,
|
||
[
|
||
batch_size1Bb,
|
||
total_epoch1Bb,
|
||
exp_name,
|
||
if_dpo,
|
||
if_save_latest1Bb,
|
||
if_save_every_weights1Bb,
|
||
save_every_epoch1Bb,
|
||
gpu_numbers1Bb,
|
||
pretrained_s1,
|
||
],
|
||
[info1Bb, button1Bb_open, button1Bb_close, SoVITS_dropdown, GPT_dropdown],
|
||
)
|
||
version_checkbox.change(
|
||
switch_version,
|
||
[version_checkbox],
|
||
[
|
||
pretrained_s2G,
|
||
pretrained_s2D,
|
||
pretrained_s1,
|
||
GPT_dropdown,
|
||
SoVITS_dropdown,
|
||
batch_size,
|
||
total_epoch,
|
||
save_every_epoch,
|
||
text_low_lr_rate,
|
||
if_grad_ckpt,
|
||
batched_infer_enabled,
|
||
lora_rank,
|
||
],
|
||
)
|
||
|
||
with gr.TabItem(i18n("2-GPT-SoVITS-变声")):
|
||
gr.Markdown(value=i18n("施工中,请静候佳音"))
|
||
|
||
app.queue().launch( # concurrency_count=511, max_size=1022
|
||
server_name="0.0.0.0",
|
||
inbrowser=True,
|
||
share=is_share,
|
||
server_port=webui_port_main,
|
||
# quiet=True,
|
||
)
|