mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-06 03:57:44 +08:00
* Fix onnx_export to support v2 * delete some useless code & add some args type for export torch-script * Add export_torch_script.py * (export_torch_script.py) 整合 vits 和 t2s 成一个 model 导出 * 恢复 `t2s_model.py` 把改动移到 `export_torch_script.py`
407 lines
14 KiB
Python
407 lines
14 KiB
Python
import math
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
|
|
from module import commons
|
|
|
|
from typing import Optional
|
|
|
|
class LayerNorm(nn.Module):
|
|
def __init__(self, channels, eps=1e-5):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.eps = eps
|
|
|
|
self.gamma = nn.Parameter(torch.ones(channels))
|
|
self.beta = nn.Parameter(torch.zeros(channels))
|
|
|
|
def forward(self, x):
|
|
x = x.transpose(1, -1)
|
|
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
|
return x.transpose(1, -1)
|
|
|
|
|
|
@torch.jit.script
|
|
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
|
n_channels_int = n_channels[0]
|
|
in_act = input_a + input_b
|
|
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
|
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
|
acts = t_act * s_act
|
|
return acts
|
|
|
|
|
|
class Encoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
hidden_channels,
|
|
filter_channels,
|
|
n_heads,
|
|
n_layers,
|
|
kernel_size=1,
|
|
p_dropout=0.0,
|
|
window_size=4,
|
|
isflow=True,
|
|
**kwargs
|
|
):
|
|
super().__init__()
|
|
self.hidden_channels = hidden_channels
|
|
self.filter_channels = filter_channels
|
|
self.n_heads = n_heads
|
|
self.n_layers = n_layers
|
|
self.kernel_size = kernel_size
|
|
self.p_dropout = p_dropout
|
|
self.window_size = window_size
|
|
# if isflow:
|
|
# cond_layer = torch.nn.Conv1d(256, 2*hidden_channels*n_layers, 1)
|
|
# self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1)
|
|
# self.cond_layer = weight_norm(cond_layer, name='weight')
|
|
# self.gin_channels = 256
|
|
self.cond_layer_idx = self.n_layers
|
|
self.spk_emb_linear = nn.Linear(256, self.hidden_channels)
|
|
if "gin_channels" in kwargs:
|
|
self.gin_channels = kwargs["gin_channels"]
|
|
if self.gin_channels != 0:
|
|
self.spk_emb_linear = nn.Linear(self.gin_channels, self.hidden_channels)
|
|
# vits2 says 3rd block, so idx is 2 by default
|
|
self.cond_layer_idx = (
|
|
kwargs["cond_layer_idx"] if "cond_layer_idx" in kwargs else 2
|
|
)
|
|
logging.debug(self.gin_channels, self.cond_layer_idx)
|
|
assert (
|
|
self.cond_layer_idx < self.n_layers
|
|
), "cond_layer_idx should be less than n_layers"
|
|
self.drop = nn.Dropout(p_dropout)
|
|
self.attn_layers = nn.ModuleList()
|
|
self.norm_layers_1 = nn.ModuleList()
|
|
self.ffn_layers = nn.ModuleList()
|
|
self.norm_layers_2 = nn.ModuleList()
|
|
for i in range(self.n_layers):
|
|
self.attn_layers.append(
|
|
MultiHeadAttention(
|
|
hidden_channels,
|
|
hidden_channels,
|
|
n_heads,
|
|
p_dropout=p_dropout,
|
|
window_size=window_size,
|
|
)
|
|
)
|
|
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
|
self.ffn_layers.append(
|
|
FFN(
|
|
hidden_channels,
|
|
hidden_channels,
|
|
filter_channels,
|
|
kernel_size,
|
|
p_dropout=p_dropout,
|
|
)
|
|
)
|
|
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
|
|
|
# def forward(self, x, x_mask, g=None):
|
|
# attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
|
# x = x * x_mask
|
|
# for i in range(self.n_layers):
|
|
# if i == self.cond_layer_idx and g is not None:
|
|
# g = self.spk_emb_linear(g.transpose(1, 2))
|
|
# g = g.transpose(1, 2)
|
|
# x = x + g
|
|
# x = x * x_mask
|
|
# y = self.attn_layers[i](x, x, attn_mask)
|
|
# y = self.drop(y)
|
|
# x = self.norm_layers_1[i](x + y)
|
|
|
|
# y = self.ffn_layers[i](x, x_mask)
|
|
# y = self.drop(y)
|
|
# x = self.norm_layers_2[i](x + y)
|
|
# x = x * x_mask
|
|
# return x
|
|
|
|
def forward(self, x, x_mask):
|
|
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
|
x = x * x_mask
|
|
for attn_layers,norm_layers_1,ffn_layers,norm_layers_2 in zip(self.attn_layers,self.norm_layers_1,self.ffn_layers,self.norm_layers_2):
|
|
y = attn_layers(x, x, attn_mask)
|
|
y = self.drop(y)
|
|
x = norm_layers_1(x + y)
|
|
|
|
y = ffn_layers(x, x_mask)
|
|
y = self.drop(y)
|
|
x = norm_layers_2(x + y)
|
|
x = x * x_mask
|
|
return x
|
|
|
|
|
|
class MultiHeadAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
channels,
|
|
out_channels,
|
|
n_heads,
|
|
p_dropout=0.0,
|
|
window_size=None,
|
|
heads_share=True,
|
|
block_length=None,
|
|
proximal_bias=False,
|
|
proximal_init=False,
|
|
):
|
|
super().__init__()
|
|
assert channels % n_heads == 0
|
|
|
|
self.channels = channels
|
|
self.out_channels = out_channels
|
|
self.n_heads = n_heads
|
|
self.p_dropout = p_dropout
|
|
self.window_size = window_size
|
|
self.heads_share = heads_share
|
|
self.block_length = block_length
|
|
self.proximal_bias = proximal_bias
|
|
self.proximal_init = proximal_init
|
|
self.attn = None
|
|
|
|
self.k_channels = channels // n_heads
|
|
self.conv_q = nn.Conv1d(channels, channels, 1)
|
|
self.conv_k = nn.Conv1d(channels, channels, 1)
|
|
self.conv_v = nn.Conv1d(channels, channels, 1)
|
|
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
|
self.drop = nn.Dropout(p_dropout)
|
|
|
|
if window_size is not None:
|
|
n_heads_rel = 1 if heads_share else n_heads
|
|
rel_stddev = self.k_channels**-0.5
|
|
self.emb_rel_k = nn.Parameter(
|
|
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
|
* rel_stddev
|
|
)
|
|
self.emb_rel_v = nn.Parameter(
|
|
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
|
* rel_stddev
|
|
)
|
|
|
|
nn.init.xavier_uniform_(self.conv_q.weight)
|
|
nn.init.xavier_uniform_(self.conv_k.weight)
|
|
nn.init.xavier_uniform_(self.conv_v.weight)
|
|
if proximal_init:
|
|
with torch.no_grad():
|
|
self.conv_k.weight.copy_(self.conv_q.weight)
|
|
self.conv_k.bias.copy_(self.conv_q.bias)
|
|
|
|
def forward(self, x, c, attn_mask:Optional[torch.Tensor]=None):
|
|
q = self.conv_q(x)
|
|
k = self.conv_k(c)
|
|
v = self.conv_v(c)
|
|
|
|
# x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
|
x, _ = self.attention(q, k, v, mask=attn_mask)
|
|
|
|
x = self.conv_o(x)
|
|
return x
|
|
|
|
def attention(self, query, key, value, mask:Optional[torch.Tensor]=None):
|
|
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
|
b, d, t_s, _ = (*key.size(), query.size(2))
|
|
query = query.view(b, self.n_heads, self.k_channels, -1).transpose(2, 3)
|
|
key = key.view(b, self.n_heads, self.k_channels, -1).transpose(2, 3)
|
|
value = value.view(b, self.n_heads, self.k_channels, -1).transpose(2, 3)
|
|
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
|
|
|
if self.window_size is not None:
|
|
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
|
rel_logits = self._matmul_with_relative_keys(query / math.sqrt(self.k_channels), key_relative_embeddings)
|
|
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
|
scores = scores + scores_local
|
|
|
|
if mask is not None:
|
|
scores = scores.masked_fill(mask == 0, -1e4)
|
|
|
|
p_attn = F.softmax(scores, dim=-1)
|
|
p_attn = self.drop(p_attn)
|
|
output = torch.matmul(p_attn, value)
|
|
|
|
if self.window_size is not None:
|
|
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
|
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
|
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
|
|
|
output = (output.transpose(2, 3).contiguous().view(b, d, -1))
|
|
return output, p_attn
|
|
|
|
def _matmul_with_relative_values(self, x, y):
|
|
"""
|
|
x: [b, h, l, m]
|
|
y: [h or 1, m, d]
|
|
ret: [b, h, l, d]
|
|
"""
|
|
ret = torch.matmul(x, y.unsqueeze(0))
|
|
return ret
|
|
|
|
def _matmul_with_relative_keys(self, x, y):
|
|
"""
|
|
x: [b, h, l, d]
|
|
y: [h or 1, m, d]
|
|
ret: [b, h, l, m]
|
|
"""
|
|
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
|
return ret
|
|
|
|
def _get_relative_embeddings(self, relative_embeddings, length):
|
|
max_relative_position = 2 * self.window_size + 1
|
|
# Pad first before slice to avoid using cond ops.
|
|
pad_l = torch.zeros((1), dtype = torch.int64) + length - (self.window_size + 1)
|
|
pad_s = torch.zeros((1), dtype = torch.int64) + (self.window_size + 1) - length
|
|
pad_length = torch.max(pad_l, other=torch.zeros((1), dtype = torch.int64))
|
|
slice_start_position = torch.max(pad_s, other=torch.zeros((1), dtype = torch.int64))
|
|
|
|
slice_end_position = slice_start_position + 2 * length - 1
|
|
padded_relative_embeddings = F.pad(
|
|
relative_embeddings,
|
|
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
|
)
|
|
used_relative_embeddings = padded_relative_embeddings[
|
|
:, slice_start_position:slice_end_position
|
|
]
|
|
return used_relative_embeddings
|
|
|
|
def _relative_position_to_absolute_position(self, x):
|
|
"""
|
|
x: [b, h, l, 2*l-1]
|
|
ret: [b, h, l, l]
|
|
"""
|
|
batch, heads, length, _ = x.size()
|
|
# Concat columns of pad to shift from relative to absolute indexing.
|
|
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
|
|
|
|
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
|
x_flat = x.view([batch, heads, length * 2 * length])
|
|
x_flat = F.pad(
|
|
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
|
|
)
|
|
|
|
# Reshape and slice out the padded elements.
|
|
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
|
|
:, :, :length, length - 1 :
|
|
]
|
|
return x_final
|
|
|
|
def _absolute_position_to_relative_position(self, x):
|
|
"""
|
|
x: [b, h, l, l]
|
|
ret: [b, h, l, 2*l-1]
|
|
"""
|
|
batch, heads, length, _ = x.size()
|
|
# padd along column
|
|
x = F.pad(
|
|
x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
|
|
)
|
|
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
|
# add 0's in the beginning that will skew the elements after reshape
|
|
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
|
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
|
return x_final
|
|
|
|
def _attention_bias_proximal(self, length):
|
|
"""Bias for self-attention to encourage attention to close positions.
|
|
Args:
|
|
length: an integer scalar.
|
|
Returns:
|
|
a Tensor with shape [1, 1, length, length]
|
|
"""
|
|
r = torch.arange(length, dtype=torch.float32)
|
|
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
|
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
|
|
|
|
|
class FFN(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
out_channels,
|
|
filter_channels,
|
|
kernel_size,
|
|
p_dropout=0.0,
|
|
activation="",
|
|
causal=False,
|
|
):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.filter_channels = filter_channels
|
|
self.kernel_size = kernel_size
|
|
self.p_dropout = p_dropout
|
|
self.activation = activation
|
|
self.causal = causal
|
|
|
|
# 从上下文看这里一定是 False
|
|
# if causal:
|
|
# self.padding = self._causal_padding
|
|
# else:
|
|
# self.padding = self._same_padding
|
|
|
|
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
|
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
|
self.drop = nn.Dropout(p_dropout)
|
|
|
|
def forward(self, x, x_mask):
|
|
x = self.conv_1(self.padding(x * x_mask))
|
|
if self.activation == "gelu":
|
|
x = x * torch.sigmoid(1.702 * x)
|
|
else:
|
|
x = torch.relu(x)
|
|
x = self.drop(x)
|
|
x = self.conv_2(self.padding(x * x_mask))
|
|
return x * x_mask
|
|
|
|
def padding(self, x):
|
|
return self._same_padding(x)
|
|
|
|
def _causal_padding(self, x):
|
|
if self.kernel_size == 1:
|
|
return x
|
|
pad_l = self.kernel_size - 1
|
|
pad_r = 0
|
|
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
|
x = F.pad(x, commons.convert_pad_shape(padding))
|
|
return x
|
|
|
|
def _same_padding(self, x):
|
|
if self.kernel_size == 1:
|
|
return x
|
|
pad_l = (self.kernel_size - 1) // 2
|
|
pad_r = self.kernel_size // 2
|
|
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
|
x = F.pad(x, commons.convert_pad_shape(padding))
|
|
return x
|
|
|
|
|
|
class MRTE(nn.Module):
|
|
def __init__(
|
|
self,
|
|
content_enc_channels=192,
|
|
hidden_size=512,
|
|
out_channels=192,
|
|
kernel_size=5,
|
|
n_heads=4,
|
|
ge_layer=2,
|
|
):
|
|
super(MRTE, self).__init__()
|
|
self.cross_attention = MultiHeadAttention(hidden_size, hidden_size, n_heads)
|
|
self.c_pre = nn.Conv1d(content_enc_channels, hidden_size, 1)
|
|
self.text_pre = nn.Conv1d(content_enc_channels, hidden_size, 1)
|
|
self.c_post = nn.Conv1d(hidden_size, out_channels, 1)
|
|
|
|
def forward(self, ssl_enc, ssl_mask, text, text_mask, ge):
|
|
attn_mask = text_mask.unsqueeze(2) * ssl_mask.unsqueeze(-1)
|
|
|
|
ssl_enc = self.c_pre(ssl_enc * ssl_mask)
|
|
text_enc = self.text_pre(text * text_mask)
|
|
x = (
|
|
self.cross_attention(
|
|
ssl_enc * ssl_mask, text_enc * text_mask, attn_mask
|
|
)
|
|
+ ssl_enc
|
|
+ ge
|
|
)
|
|
x = self.c_post(x * ssl_mask)
|
|
return x
|