mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-06 03:57:44 +08:00
220 lines
6.8 KiB
Python
220 lines
6.8 KiB
Python
"""
|
|
ein notation:
|
|
b - batch
|
|
n - sequence
|
|
nt - text sequence
|
|
nw - raw wave length
|
|
d - dimension
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
from typing import Literal
|
|
|
|
import torch
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
|
|
from x_transformers import RMSNorm
|
|
from x_transformers.x_transformers import RotaryEmbedding
|
|
|
|
from f5_tts.model.modules import (
|
|
TimestepEmbedding,
|
|
ConvNeXtV2Block,
|
|
ConvPositionEmbedding,
|
|
Attention,
|
|
AttnProcessor,
|
|
FeedForward,
|
|
precompute_freqs_cis,
|
|
get_pos_embed_indices,
|
|
)
|
|
|
|
|
|
# Text embedding
|
|
|
|
|
|
class TextEmbedding(nn.Module):
|
|
def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2):
|
|
super().__init__()
|
|
self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token
|
|
|
|
if conv_layers > 0:
|
|
self.extra_modeling = True
|
|
self.precompute_max_pos = 4096 # ~44s of 24khz audio
|
|
self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False)
|
|
self.text_blocks = nn.Sequential(
|
|
*[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)]
|
|
)
|
|
else:
|
|
self.extra_modeling = False
|
|
|
|
def forward(self, text: int["b nt"], seq_len, drop_text=False): # noqa: F722
|
|
text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx()
|
|
text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens
|
|
batch, text_len = text.shape[0], text.shape[1]
|
|
text = F.pad(text, (0, seq_len - text_len), value=0)
|
|
|
|
if drop_text: # cfg for text
|
|
text = torch.zeros_like(text)
|
|
|
|
text = self.text_embed(text) # b n -> b n d
|
|
|
|
# possible extra modeling
|
|
if self.extra_modeling:
|
|
# sinus pos emb
|
|
batch_start = torch.zeros((batch,), dtype=torch.long)
|
|
pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos)
|
|
text_pos_embed = self.freqs_cis[pos_idx]
|
|
text = text + text_pos_embed
|
|
|
|
# convnextv2 blocks
|
|
text = self.text_blocks(text)
|
|
|
|
return text
|
|
|
|
|
|
# noised input audio and context mixing embedding
|
|
|
|
|
|
class InputEmbedding(nn.Module):
|
|
def __init__(self, mel_dim, text_dim, out_dim):
|
|
super().__init__()
|
|
self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim)
|
|
self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim)
|
|
|
|
def forward(self, x: float["b n d"], cond: float["b n d"], text_embed: float["b n d"], drop_audio_cond=False): # noqa: F722
|
|
if drop_audio_cond: # cfg for cond audio
|
|
cond = torch.zeros_like(cond)
|
|
|
|
x = self.proj(torch.cat((x, cond, text_embed), dim=-1))
|
|
x = self.conv_pos_embed(x) + x
|
|
return x
|
|
|
|
|
|
# Flat UNet Transformer backbone
|
|
|
|
|
|
class UNetT(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
dim,
|
|
depth=8,
|
|
heads=8,
|
|
dim_head=64,
|
|
dropout=0.1,
|
|
ff_mult=4,
|
|
mel_dim=100,
|
|
text_num_embeds=256,
|
|
text_dim=None,
|
|
conv_layers=0,
|
|
skip_connect_type: Literal["add", "concat", "none"] = "concat",
|
|
):
|
|
super().__init__()
|
|
assert depth % 2 == 0, "UNet-Transformer's depth should be even."
|
|
|
|
self.time_embed = TimestepEmbedding(dim)
|
|
if text_dim is None:
|
|
text_dim = mel_dim
|
|
self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers=conv_layers)
|
|
self.input_embed = InputEmbedding(mel_dim, text_dim, dim)
|
|
|
|
self.rotary_embed = RotaryEmbedding(dim_head)
|
|
|
|
# transformer layers & skip connections
|
|
|
|
self.dim = dim
|
|
self.skip_connect_type = skip_connect_type
|
|
needs_skip_proj = skip_connect_type == "concat"
|
|
|
|
self.depth = depth
|
|
self.layers = nn.ModuleList([])
|
|
|
|
for idx in range(depth):
|
|
is_later_half = idx >= (depth // 2)
|
|
|
|
attn_norm = RMSNorm(dim)
|
|
attn = Attention(
|
|
processor=AttnProcessor(),
|
|
dim=dim,
|
|
heads=heads,
|
|
dim_head=dim_head,
|
|
dropout=dropout,
|
|
)
|
|
|
|
ff_norm = RMSNorm(dim)
|
|
ff = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
|
|
|
|
skip_proj = nn.Linear(dim * 2, dim, bias=False) if needs_skip_proj and is_later_half else None
|
|
|
|
self.layers.append(
|
|
nn.ModuleList(
|
|
[
|
|
skip_proj,
|
|
attn_norm,
|
|
attn,
|
|
ff_norm,
|
|
ff,
|
|
]
|
|
)
|
|
)
|
|
|
|
self.norm_out = RMSNorm(dim)
|
|
self.proj_out = nn.Linear(dim, mel_dim)
|
|
|
|
def forward(
|
|
self,
|
|
x: float["b n d"], # nosied input audio # noqa: F722
|
|
cond: float["b n d"], # masked cond audio # noqa: F722
|
|
text: int["b nt"], # text # noqa: F722
|
|
time: float["b"] | float[""], # time step # noqa: F821 F722
|
|
drop_audio_cond, # cfg for cond audio
|
|
drop_text, # cfg for text
|
|
mask: bool["b n"] | None = None, # noqa: F722
|
|
):
|
|
batch, seq_len = x.shape[0], x.shape[1]
|
|
if time.ndim == 0:
|
|
time = time.repeat(batch)
|
|
|
|
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
|
|
t = self.time_embed(time)
|
|
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
|
|
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
|
|
|
|
# postfix time t to input x, [b n d] -> [b n+1 d]
|
|
x = torch.cat([t.unsqueeze(1), x], dim=1) # pack t to x
|
|
if mask is not None:
|
|
mask = F.pad(mask, (1, 0), value=1)
|
|
|
|
rope = self.rotary_embed.forward_from_seq_len(seq_len + 1)
|
|
|
|
# flat unet transformer
|
|
skip_connect_type = self.skip_connect_type
|
|
skips = []
|
|
for idx, (maybe_skip_proj, attn_norm, attn, ff_norm, ff) in enumerate(self.layers):
|
|
layer = idx + 1
|
|
|
|
# skip connection logic
|
|
is_first_half = layer <= (self.depth // 2)
|
|
is_later_half = not is_first_half
|
|
|
|
if is_first_half:
|
|
skips.append(x)
|
|
|
|
if is_later_half:
|
|
skip = skips.pop()
|
|
if skip_connect_type == "concat":
|
|
x = torch.cat((x, skip), dim=-1)
|
|
x = maybe_skip_proj(x)
|
|
elif skip_connect_type == "add":
|
|
x = x + skip
|
|
|
|
# attention and feedforward blocks
|
|
x = attn(attn_norm(x), rope=rope, mask=mask) + x
|
|
x = ff(ff_norm(x)) + x
|
|
|
|
assert len(skips) == 0
|
|
|
|
x = self.norm_out(x)[:, 1:, :] # unpack t from x
|
|
|
|
return self.proj_out(x)
|