GPT-SoVITS/tools/slice_audio.py
2024-04-11 01:16:14 +01:00

505 lines
16 KiB
Python

# modified from https://github.com/fishaudio/audio-preprocess/blob/main/fish_audio_preprocess/cli/slice_audio.py
from pathlib import Path
from typing import Union, Iterable
from concurrent.futures import ProcessPoolExecutor, as_completed
from tqdm import tqdm
import librosa
import numpy as np
import soundfile as sf
import math
from my_utils import load_audio
import argparse
import os
AUDIO_EXTENSIONS = {
".mp3",
".wav",
".flac",
".ogg",
".m4a",
".wma",
".aac",
".aiff",
".aif",
".aifc",
}
def list_files(
path: Union[Path, str],
extensions: set[str] = None,
sort: bool = True,
) -> list[Path]:
"""List files in a directory.
Args:
path (Path): Path to the directory.
extensions (set, optional): Extensions to filter. Defaults to None.
sort (bool, optional): Whether to sort the files. Defaults to True.
Returns:
list: List of files.
"""
if isinstance(path, str):
path = Path(path)
if not path.exists():
raise FileNotFoundError(f"Directory {path} does not exist.")
files = [f for f in path.glob("*") if f.is_file()]
if extensions is not None:
files = [f for f in files if f.suffix in extensions]
if sort:
files = sorted(files)
return files
def make_dirs(path: Union[Path, str]):
"""Make directories.
Args:
path (Union[Path, str]): Path to the directory.
"""
if isinstance(path, str):
path = Path(path)
if path.exists():
print(f"Output directory already exists: {path}")
path.mkdir(parents=True, exist_ok=True)
def slice_audio_v2_(
input_path: str,
output_dir: str,
num_workers: int,
min_duration: float,
max_duration: float,
min_silence_duration: float,
top_db: int,
hop_length: int,
max_silence_kept: float,
merge_short:bool
):
"""(OpenVPI version) Slice audio files into smaller chunks by silence."""
input_path_, output_dir_ = Path(input_path), Path(output_dir)
if not input_path_.exists():
raise RuntimeError("You input a wrong audio path that does not exists, please fix it!")
make_dirs(output_dir_)
if input_path_.is_dir():
files = list_files(input_path_, extensions=AUDIO_EXTENSIONS)
elif input_path_.is_file() and input_path_.suffix in AUDIO_EXTENSIONS:
files = [input_path_]
input_path_ = input_path_.parent
else:
raise RuntimeError("The input path is not file or dir, please fixes it")
print(f"Found {len(files)} files, processing...")
with ProcessPoolExecutor(max_workers=num_workers) as executor:
tasks = []
for file in tqdm(files, desc="Preparing tasks"):
# Get relative path to input_dir
relative_path = file.relative_to(input_path_)
save_path = output_dir_ / relative_path.parent / relative_path.stem
tasks.append(
executor.submit(
slice_audio_file_v2,
input_file=str(file),
output_dir=save_path,
min_duration=min_duration,
max_duration=max_duration,
min_silence_duration=min_silence_duration,
top_db=top_db,
hop_length=hop_length,
max_silence_kept=max_silence_kept,
merge_short=merge_short
)
)
for i in tqdm(as_completed(tasks), total=len(tasks), desc="Processing"):
assert i.exception() is None, i.exception()
print("Done!")
print(f"Total: {len(files)}")
print(f"Output directory: {output_dir}")
def slice_audio_file_v2(
input_file: Union[str, Path],
output_dir: Union[str, Path],
min_duration: float = 4.0,
max_duration: float = 12.0,
min_silence_duration: float = 0.3,
top_db: int = -40,
hop_length: int = 10,
max_silence_kept: float = 0.4,
merge_short: bool = False
) -> None:
"""
Slice audio by silence and save to output folder
Args:
input_file: input audio file
output_dir: output folder
min_duration: minimum duration of each slice
max_duration: maximum duration of each slice
min_silence_duration: minimum duration of silence
top_db: threshold to detect silence
hop_length: hop length to detect silence
max_silence_kept: maximum duration of silence to be kept
"""
output_dir = Path(output_dir)
audio = load_audio(str(input_file),32000)
rate = 32000
for idx, sliced in enumerate(
slice_audio_v2(
audio,
rate,
min_duration=min_duration,
max_duration=max_duration,
min_silence_duration=min_silence_duration,
top_db=top_db,
hop_length=hop_length,
max_silence_kept=max_silence_kept,
merge_short=merge_short
)
):
if len(sliced) <= 3*rate: continue
max_audio=np.abs(sliced).max()#防止爆音,懒得搞混合了,后面有响度匹配
if max_audio>1:
sliced/=max_audio
sf.write(str(output_dir) + f"_{idx:04d}.wav", sliced, rate)
def slice_audio_v2(
audio: np.ndarray,
rate: int,
min_duration: float = 4.0,
max_duration: float = 12.0,
min_silence_duration: float = 0.3,
top_db: int = -40,
hop_length: int = 10,
max_silence_kept: float = 0.5,
merge_short: bool = False
) -> Iterable[np.ndarray]:
"""Slice audio by silence
Args:
audio: audio data, in shape (samples, channels)
rate: sample rate
min_duration: minimum duration of each slice
max_duration: maximum duration of each slice
min_silence_duration: minimum duration of silence
top_db: threshold to detect silence
hop_length: hop length to detect silence
max_silence_kept: maximum duration of silence to be kept
merge_short: merge short slices automatically
Returns:
Iterable of sliced audio
"""
if len(audio) / rate < min_duration:
sliced_by_max_duration_chunk = slice_by_max_duration(audio, max_duration, rate)
yield from merge_short_chunks(
sliced_by_max_duration_chunk, max_duration, rate
) if merge_short else sliced_by_max_duration_chunk
return
slicer = Slicer(
sr=rate,
threshold=top_db,
min_length=min_duration * 1000,
min_interval=min_silence_duration * 1000,
hop_size=hop_length,
max_sil_kept=max_silence_kept * 1000,
)
sliced_audio = slicer.slice(audio)
if merge_short:
sliced_audio = merge_short_chunks(sliced_audio, max_duration, rate)
for chunk in sliced_audio:
sliced_by_max_duration_chunk = slice_by_max_duration(chunk, max_duration, rate)
yield from sliced_by_max_duration_chunk
def slice_by_max_duration(
gen: np.ndarray, slice_max_duration: float, rate: int
) -> Iterable[np.ndarray]:
"""Slice audio by max duration
Args:
gen: audio data, in shape (samples, channels)
slice_max_duration: maximum duration of each slice
rate: sample rate
Returns:
generator of sliced audio data
"""
if len(gen) > slice_max_duration * rate:
# Evenly split _gen into multiple slices
n_chunks = math.ceil(len(gen) / (slice_max_duration * rate))
chunk_size = math.ceil(len(gen) / n_chunks)
for i in range(0, len(gen), chunk_size):
yield gen[i : i + chunk_size]
else:
yield gen
class Slicer:
def __init__(
self,
sr: int,
threshold: float = -40.0,
min_length: int = 4000,
min_interval: int = 300,
hop_size: int = 10,
max_sil_kept: int = 5000,
):
if not min_length >= min_interval >= hop_size:
raise ValueError(
"The following condition must be satisfied: min_length >= min_interval >= hop_size"
)
if not max_sil_kept >= hop_size:
raise ValueError(
"The following condition must be satisfied: max_sil_kept >= hop_size"
)
min_interval = sr * min_interval / 1000
self.threshold = 10 ** (threshold / 20.0)
self.hop_size = round(sr * hop_size / 1000)
self.win_size = min(round(min_interval), 4 * self.hop_size)
self.min_length = round(sr * min_length / 1000 / self.hop_size)
self.min_interval = round(min_interval / self.hop_size)
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
def _apply_slice(self, waveform, begin, end):
if len(waveform.shape) > 1:
return waveform[
:, begin * self.hop_size : min(waveform.shape[1], end * self.hop_size)
]
else:
return waveform[
begin * self.hop_size : min(waveform.shape[0], end * self.hop_size)
]
def slice(self, waveform):
if len(waveform.shape) > 1:
samples = waveform.mean(axis=0)
else:
samples = waveform
if samples.shape[0] <= self.min_length:
return [waveform]
rms_list = librosa.feature.rms(
y=samples, frame_length=self.win_size, hop_length=self.hop_size
).squeeze(0)
sil_tags = []
silence_start = None
clip_start = 0
for i, rms in enumerate(rms_list):
# Keep looping while frame is silent.
if rms < self.threshold:
# Record start of silent frames.
if silence_start is None:
silence_start = i
continue
# Keep looping while frame is not silent and silence start has not been recorded.
if silence_start is None:
continue
# Clear recorded silence start if interval is not enough or clip is too short
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
need_slice_middle = (
i - silence_start >= self.min_interval
and i - clip_start >= self.min_length
)
if not is_leading_silence and not need_slice_middle:
silence_start = None
continue
# Need slicing. Record the range of silent frames to be removed.
if i - silence_start <= self.max_sil_kept:
pos = rms_list[silence_start : i + 1].argmin() + silence_start
if silence_start == 0:
sil_tags.append((0, pos))
else:
sil_tags.append((pos, pos))
clip_start = pos
elif i - silence_start <= self.max_sil_kept * 2:
pos = rms_list[
i - self.max_sil_kept : silence_start + self.max_sil_kept + 1
].argmin()
pos += i - self.max_sil_kept
pos_l = (
rms_list[
silence_start : silence_start + self.max_sil_kept + 1
].argmin()
+ silence_start
)
pos_r = (
rms_list[i - self.max_sil_kept : i + 1].argmin()
+ i
- self.max_sil_kept
)
if silence_start == 0:
sil_tags.append((0, pos_r))
clip_start = pos_r
else:
sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
clip_start = max(pos_r, pos)
else:
pos_l = (
rms_list[
silence_start : silence_start + self.max_sil_kept + 1
].argmin()
+ silence_start
)
pos_r = (
rms_list[i - self.max_sil_kept : i + 1].argmin()
+ i
- self.max_sil_kept
)
if silence_start == 0:
sil_tags.append((0, pos_r))
else:
sil_tags.append((pos_l, pos_r))
clip_start = pos_r
silence_start = None
# Deal with trailing silence.
total_frames = rms_list.shape[0]
if (
silence_start is not None
and total_frames - silence_start >= self.min_interval
):
silence_end = min(total_frames, silence_start + self.max_sil_kept)
pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start
sil_tags.append((pos, total_frames + 1))
# Apply and return slices.
if len(sil_tags) == 0:
return [waveform]
else:
chunks = []
if sil_tags[0][0] > 0:
chunks.append(self._apply_slice(waveform, 0, sil_tags[0][0]))
for i in range(len(sil_tags) - 1):
chunks.append(
self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0])
)
if sil_tags[-1][1] < total_frames:
chunks.append(
self._apply_slice(waveform, sil_tags[-1][1], total_frames)
)
return chunks
# def merge_short_chunks(chunks, max_duration, rate):
# merged_chunks = []
# buffer, length = [], 0
# lengths = [len(chunk)/rate for chunk in chunks]
# print(lengths)
# for chunk in chunks:
# if length + len(chunk) > max_duration * rate and len(buffer) > 0:
# print(len(buffer))
# merged_chunks.append(np.concatenate(buffer))
# buffer, length = [], 0
# else:
# buffer.append(chunk)
# length += len(chunk)
# if len(buffer) > 0:
# print(len(buffer))
# merged_chunks.append(np.concatenate(buffer))
# print([len(chunk)/rate for chunk in merged_chunks])
# return merged_chunks
def merge_short_chunks(chunks, max_duration, rate):
if not chunks:
return []
max_length = int(max_duration * rate) # 确保 max_length 是整数
merged = []
current = chunks[0] # 开始时 current 是第一个音频块
for chunk in chunks[1:]: # 从第二个音频块开始遍历
if len(current) + len(chunk) <= max_length:
current = np.concatenate((current, np.zeros(int(0.1*rate)), chunk)) # 在合并前后加入一个0.1s作为间隔
else:
merged.append(current)
current = chunk # 开始新的合并块
merged.append(current) # 添加最后一个块
return merged
parser = argparse.ArgumentParser()
parser.add_argument("-i","--input_dir",help="切割输入文件夹")
parser.add_argument("-o","--output_dir",help="切割输入文件夹")
parser.add_argument("--threshold",default=-40,help="音量小于这个值视作静音的备选切割点")
parser.add_argument("--min_duration",default=4,help="每段最短多长,如果第一段太短一直和后面段连起来直到超过这个值")
parser.add_argument("--max_duration",default=12,help="每段最长多长")
parser.add_argument("--min_interval",default=0.3,help="最短切割间隔")
parser.add_argument("--hop_size",default=10,help="怎么算音量曲线,越小精度越大计算量越高(不是精度越大效果越好)")
parser.add_argument("--max_sil_kept",default=0.4,help="切完后静音最多留多长")
parser.add_argument("--num_worker",default=os.cpu_count(),help="切使用的进程数")
parser.add_argument("--merge_short",default="False",help="响割使用的进程数")
args = parser.parse_args()
input_path = args.input_dir
output_dir = args.output_dir
threshold = float(args.threshold)
min_duration = float(args.min_duration)
max_duration = float(args.max_duration)
min_interval = float(args.min_interval)
hop_size = float(args.hop_size)
max_sil_kept = float(args.max_sil_kept)
num_worker = int(args.num_worker)
merge_short = eval(args.merge_short)
if __name__ == "__main__":
slice_audio_v2_(input_path, output_dir, num_worker, min_duration, max_duration, min_interval, threshold, hop_size, max_sil_kept,merge_short)