RVC-Boss 921ac6c41a
support sovits v2Pro v2ProPlus
support sovits v2Pro v2ProPlus
2025-06-04 15:16:47 +08:00

24 lines
1.1 KiB
Python

import sys,os,torch
sys.path.append(f"{os.getcwd()}/GPT_SoVITS/eres2net")
sv_path = "GPT_SoVITS\pretrained_models\sv\pretrained_eres2netv2w24s4ep4.ckpt"
from ERes2NetV2 import ERes2NetV2
import kaldi as Kaldi
class SV:
def __init__(self,device,is_half):
pretrained_state = torch.load(sv_path, map_location='cpu', weights_only=False)
embedding_model = ERes2NetV2(baseWidth=24,scale=4,expansion=4)
embedding_model.load_state_dict(pretrained_state)
embedding_model.eval()
self.embedding_model=embedding_model
if is_half == False:
self.embedding_model=self.embedding_model.to(device)
else:
self.embedding_model=self.embedding_model.half().to(device)
self.is_half=is_half
def compute_embedding3(self,wav):#(1,x)#-1~1
with torch.no_grad():
if self.is_half==True:wav=wav.half()
feat = torch.stack([Kaldi.fbank(wav0.unsqueeze(0), num_mel_bins=80, sample_frequency=16000, dither=0) for wav0 in wav])
sv_emb = self.embedding_model.forward3(feat)
return sv_emb