mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 19:41:56 +08:00
1339 lines
50 KiB
Python
1339 lines
50 KiB
Python
import json, yaml, warnings, torch
|
||
import platform
|
||
|
||
warnings.filterwarnings("ignore")
|
||
torch.manual_seed(233333)
|
||
import os, sys
|
||
|
||
now_dir = os.getcwd()
|
||
tmp = os.path.join(now_dir, "TEMP")
|
||
os.makedirs(tmp, exist_ok=True)
|
||
os.environ["TEMP"] = tmp
|
||
import site
|
||
|
||
site_packages_root = "%s/runtime/Lib/site-packages" % now_dir
|
||
for path in site.getsitepackages():
|
||
if "site-packages" in path:
|
||
site_packages_root = path
|
||
os.environ["OPENBLAS_NUM_THREADS"] = "4"
|
||
os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1"
|
||
with open("%s/users.pth" % (site_packages_root), "w") as f:
|
||
f.write(
|
||
"%s\n%s/tools\n%s/tools/damo_asr\n%s/GPT_SoVITS\n%s/tools/uvr5"
|
||
% (now_dir, now_dir, now_dir, now_dir, now_dir)
|
||
)
|
||
import traceback
|
||
|
||
sys.path.append(now_dir)
|
||
import gradio as gr
|
||
from subprocess import Popen
|
||
from config import (
|
||
python_exec,
|
||
infer_device,
|
||
is_half,
|
||
exp_root,
|
||
webui_port_main,
|
||
webui_port_infer_tts,
|
||
webui_port_uvr5,
|
||
webui_port_subfix,
|
||
)
|
||
from tools.i18n.i18n import I18nAuto
|
||
|
||
i18n = I18nAuto()
|
||
from multiprocessing import cpu_count
|
||
|
||
n_cpu = cpu_count()
|
||
|
||
# 判断是否有能用来训练和加速推理的N卡
|
||
ngpu = torch.cuda.device_count()
|
||
gpu_infos = []
|
||
mem = []
|
||
if_gpu_ok = False
|
||
|
||
if torch.cuda.is_available() or ngpu != 0:
|
||
for i in range(ngpu):
|
||
gpu_name = torch.cuda.get_device_name(i)
|
||
if any(
|
||
value in gpu_name.upper()
|
||
for value in [
|
||
"10",
|
||
"16",
|
||
"20",
|
||
"30",
|
||
"40",
|
||
"A2",
|
||
"A3",
|
||
"A4",
|
||
"P4",
|
||
"A50",
|
||
"500",
|
||
"A60",
|
||
"70",
|
||
"80",
|
||
"90",
|
||
"M4",
|
||
"T4",
|
||
"TITAN",
|
||
"L",
|
||
]
|
||
):
|
||
# A10#A100#V100#A40#P40#M40#K80#A4500
|
||
if_gpu_ok = True # 至少有一张能用的N卡
|
||
gpu_infos.append("%s\t%s" % (i, gpu_name))
|
||
mem.append(
|
||
int(
|
||
torch.cuda.get_device_properties(i).total_memory
|
||
/ 1024
|
||
/ 1024
|
||
/ 1024
|
||
+ 0.4
|
||
)
|
||
)
|
||
if if_gpu_ok and len(gpu_infos) > 0:
|
||
gpu_info = "\n".join(gpu_infos)
|
||
default_batch_size = min(mem) // 2
|
||
else:
|
||
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
|
||
default_batch_size = 1
|
||
gpus = "-".join([i[0] for i in gpu_infos])
|
||
|
||
pretrained_sovits_name = "GPT_SoVITS/pretrained_models/s2G488k.pth"
|
||
pretrained_gpt_name = (
|
||
"GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
||
)
|
||
|
||
|
||
def get_weights_names():
|
||
SoVITS_names = [pretrained_sovits_name]
|
||
for name in os.listdir(SoVITS_weight_root):
|
||
if name.endswith(".pth"):
|
||
SoVITS_names.append(name)
|
||
GPT_names = [pretrained_gpt_name]
|
||
for name in os.listdir(GPT_weight_root):
|
||
if name.endswith(".ckpt"):
|
||
GPT_names.append(name)
|
||
return SoVITS_names, GPT_names
|
||
|
||
|
||
SoVITS_weight_root = "SoVITS_weights"
|
||
GPT_weight_root = "GPT_weights"
|
||
os.makedirs(SoVITS_weight_root, exist_ok=True)
|
||
os.makedirs(GPT_weight_root, exist_ok=True)
|
||
SoVITS_names, GPT_names = get_weights_names()
|
||
|
||
|
||
def change_choices():
|
||
SoVITS_names, GPT_names = get_weights_names()
|
||
return {"choices": sorted(SoVITS_names), "__type__": "update"}, {
|
||
"choices": sorted(GPT_names),
|
||
"__type__": "update",
|
||
}
|
||
|
||
|
||
p_label = None
|
||
p_uvr5 = None
|
||
p_asr = None
|
||
p_tts_inference = None
|
||
|
||
system = platform.system()
|
||
|
||
|
||
def kill_process(pid):
|
||
if system == "Windows":
|
||
cmd = "taskkill /t /f /pid %s" % pid
|
||
else:
|
||
cmd = "kill -9 %s" % pid
|
||
print(cmd)
|
||
os.system(cmd) ###linux上杀了webui,可能还会没杀干净。。。
|
||
# os.kill(p_label.pid,19)#主进程#控制台进程#python子进程###不好使,连主进程的webui一起关了,辣鸡
|
||
|
||
|
||
def change_label(if_label, path_list):
|
||
global p_label
|
||
if if_label == True and p_label == None:
|
||
cmd = '"%s" tools/subfix_webui.py --load_list "%s" --webui_port %s' % (
|
||
python_exec,
|
||
path_list,
|
||
webui_port_subfix,
|
||
)
|
||
yield "打标工具WebUI已开启"
|
||
print(cmd)
|
||
p_label = Popen(cmd, shell=True)
|
||
elif if_label == False and p_label != None:
|
||
kill_process(p_label.pid)
|
||
p_label = None
|
||
yield "打标工具WebUI已关闭"
|
||
|
||
|
||
def change_uvr5(if_uvr5):
|
||
global p_uvr5
|
||
if if_uvr5 == True and p_uvr5 == None:
|
||
cmd = '"%s" tools/uvr5/webui.py "%s" %s %s' % (
|
||
python_exec,
|
||
infer_device,
|
||
is_half,
|
||
webui_port_uvr5,
|
||
)
|
||
yield "UVR5已开启"
|
||
print(cmd)
|
||
p_uvr5 = Popen(cmd, shell=True)
|
||
elif if_uvr5 == False and p_uvr5 != None:
|
||
kill_process(p_uvr5.pid)
|
||
p_uvr5 = None
|
||
yield "UVR5已关闭"
|
||
|
||
|
||
def change_tts_inference(
|
||
if_tts, bert_path, cnhubert_base_path, gpu_number, gpt_path, sovits_path
|
||
):
|
||
global p_tts_inference
|
||
if if_tts == True and p_tts_inference == None:
|
||
os.environ["gpt_path"] = (
|
||
gpt_path if "/" in gpt_path else "%s/%s" % (GPT_weight_root, gpt_path)
|
||
)
|
||
os.environ["sovits_path"] = (
|
||
sovits_path
|
||
if "/" in sovits_path
|
||
else "%s/%s" % (SoVITS_weight_root, sovits_path)
|
||
)
|
||
os.environ["cnhubert_base_path"] = cnhubert_base_path
|
||
os.environ["bert_path"] = bert_path
|
||
os.environ["_CUDA_VISIBLE_DEVICES"] = gpu_number
|
||
os.environ["is_half"] = str(is_half)
|
||
os.environ["infer_ttswebui"] = str(webui_port_infer_tts)
|
||
cmd = '"%s" GPT_SoVITS/inference_webui.py' % (python_exec)
|
||
yield "TTS推理进程已开启"
|
||
print(cmd)
|
||
p_tts_inference = Popen(cmd, shell=True)
|
||
elif if_tts == False and p_tts_inference != None:
|
||
kill_process(p_tts_inference.pid)
|
||
p_tts_inference = None
|
||
yield "TTS推理进程已关闭"
|
||
|
||
|
||
def open_asr(asr_inp_dir):
|
||
global p_asr
|
||
if p_asr == None:
|
||
cmd = '"%s" tools/damo_asr/cmd-asr.py "%s"' % (python_exec, asr_inp_dir)
|
||
yield "ASR任务开启:%s" % cmd, {"__type__": "update", "visible": False}, {
|
||
"__type__": "update",
|
||
"visible": True,
|
||
}
|
||
print(cmd)
|
||
p_asr = Popen(cmd, shell=True)
|
||
p_asr.wait()
|
||
p_asr = None
|
||
yield "ASR任务完成", {"__type__": "update", "visible": True}, {
|
||
"__type__": "update",
|
||
"visible": False,
|
||
}
|
||
else:
|
||
yield "已有正在进行的ASR任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {
|
||
"__type__": "update",
|
||
"visible": True,
|
||
}
|
||
|
||
|
||
def close_asr():
|
||
global p_asr
|
||
if p_asr != None:
|
||
kill_process(p_asr.pid)
|
||
p_asr = None
|
||
return (
|
||
"已终止ASR进程",
|
||
{"__type__": "update", "visible": True},
|
||
{"__type__": "update", "visible": False},
|
||
)
|
||
|
||
|
||
"""
|
||
button1Ba_open.click(open1Ba, [batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D], [info1Bb,button1Ba_open,button1Ba_close])
|
||
button1Ba_close.click(close1Ba, [], [info1Bb,button1Ba_open,button1Ba_close])
|
||
"""
|
||
p_train_SoVITS = None
|
||
|
||
|
||
def open1Ba(
|
||
batch_size,
|
||
total_epoch,
|
||
exp_name,
|
||
text_low_lr_rate,
|
||
if_save_latest,
|
||
if_save_every_weights,
|
||
save_every_epoch,
|
||
gpu_numbers1Ba,
|
||
pretrained_s2G,
|
||
pretrained_s2D,
|
||
):
|
||
global p_train_SoVITS
|
||
if p_train_SoVITS == None:
|
||
with open("GPT_SoVITS/configs/s2.json") as f:
|
||
data = f.read()
|
||
data = json.loads(data)
|
||
s2_dir = "%s/%s" % (exp_root, exp_name)
|
||
os.makedirs("%s/logs_s2" % (s2_dir), exist_ok=True)
|
||
data["train"]["batch_size"] = batch_size
|
||
data["train"]["epochs"] = total_epoch
|
||
data["train"]["text_low_lr_rate"] = text_low_lr_rate
|
||
data["train"]["pretrained_s2G"] = pretrained_s2G
|
||
data["train"]["pretrained_s2D"] = pretrained_s2D
|
||
data["train"]["if_save_latest"] = if_save_latest
|
||
data["train"]["if_save_every_weights"] = if_save_every_weights
|
||
data["train"]["save_every_epoch"] = save_every_epoch
|
||
data["train"]["gpu_numbers"] = gpu_numbers1Ba
|
||
data["data"]["exp_dir"] = data["s2_ckpt_dir"] = s2_dir
|
||
data["save_weight_dir"] = SoVITS_weight_root
|
||
data["name"] = exp_name
|
||
tmp_config_path = "TEMP/tmp_s2.json"
|
||
with open(tmp_config_path, "w") as f:
|
||
f.write(json.dumps(data))
|
||
|
||
cmd = '"%s" GPT_SoVITS/s2_train.py --config "%s"' % (
|
||
python_exec,
|
||
tmp_config_path,
|
||
)
|
||
yield "SoVITS训练开始:%s" % cmd, {"__type__": "update", "visible": False}, {
|
||
"__type__": "update",
|
||
"visible": True,
|
||
}
|
||
print(cmd)
|
||
p_train_SoVITS = Popen(cmd, shell=True)
|
||
p_train_SoVITS.wait()
|
||
p_train_SoVITS = None
|
||
yield "SoVITS训练完成", {"__type__": "update", "visible": True}, {
|
||
"__type__": "update",
|
||
"visible": False,
|
||
}
|
||
else:
|
||
yield "已有正在进行的SoVITS训练任务,需先终止才能开启下一次任务", {
|
||
"__type__": "update",
|
||
"visible": False,
|
||
}, {"__type__": "update", "visible": True}
|
||
|
||
|
||
def close1Ba():
|
||
global p_train_SoVITS
|
||
if p_train_SoVITS != None:
|
||
kill_process(p_train_SoVITS.pid)
|
||
p_train_SoVITS = None
|
||
return (
|
||
"已终止SoVITS训练",
|
||
{"__type__": "update", "visible": True},
|
||
{"__type__": "update", "visible": False},
|
||
)
|
||
|
||
|
||
p_train_GPT = None
|
||
|
||
|
||
def open1Bb(
|
||
batch_size,
|
||
total_epoch,
|
||
exp_name,
|
||
if_save_latest,
|
||
if_save_every_weights,
|
||
save_every_epoch,
|
||
gpu_numbers,
|
||
pretrained_s1,
|
||
):
|
||
global p_train_GPT
|
||
if p_train_GPT == None:
|
||
with open("GPT_SoVITS/configs/s1longer.yaml") as f:
|
||
data = f.read()
|
||
data = yaml.load(data, Loader=yaml.FullLoader)
|
||
s1_dir = "%s/%s" % (exp_root, exp_name)
|
||
os.makedirs("%s/logs_s1" % (s1_dir), exist_ok=True)
|
||
data["train"]["batch_size"] = batch_size
|
||
data["train"]["epochs"] = total_epoch
|
||
data["pretrained_s1"] = pretrained_s1
|
||
data["train"]["save_every_n_epoch"] = save_every_epoch
|
||
data["train"]["if_save_every_weights"] = if_save_every_weights
|
||
data["train"]["if_save_latest"] = if_save_latest
|
||
data["train"]["half_weights_save_dir"] = GPT_weight_root
|
||
data["train"]["exp_name"] = exp_name
|
||
data["train_semantic_path"] = "%s/6-name2semantic.tsv" % s1_dir
|
||
data["train_phoneme_path"] = "%s/2-name2text.txt" % s1_dir
|
||
data["output_dir"] = "%s/logs_s1" % s1_dir
|
||
|
||
os.environ["_CUDA_VISIBLE_DEVICES"] = gpu_numbers.replace("-", ",")
|
||
os.environ["hz"] = "25hz"
|
||
tmp_config_path = "TEMP/tmp_s1.yaml"
|
||
with open(tmp_config_path, "w") as f:
|
||
f.write(yaml.dump(data, default_flow_style=False))
|
||
# cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" --train_semantic_path "%s/6-name2semantic.tsv" --train_phoneme_path "%s/2-name2text.txt" --output_dir "%s/logs_s1"'%(python_exec,tmp_config_path,s1_dir,s1_dir,s1_dir)
|
||
cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" ' % (
|
||
python_exec,
|
||
tmp_config_path,
|
||
)
|
||
yield "GPT训练开始:%s" % cmd, {"__type__": "update", "visible": False}, {
|
||
"__type__": "update",
|
||
"visible": True,
|
||
}
|
||
print(cmd)
|
||
p_train_GPT = Popen(cmd, shell=True)
|
||
p_train_GPT.wait()
|
||
p_train_GPT = None
|
||
yield "GPT训练完成", {"__type__": "update", "visible": True}, {
|
||
"__type__": "update",
|
||
"visible": False,
|
||
}
|
||
else:
|
||
yield "已有正在进行的GPT训练任务,需先终止才能开启下一次任务", {
|
||
"__type__": "update",
|
||
"visible": False,
|
||
}, {"__type__": "update", "visible": True}
|
||
|
||
|
||
def close1Bb():
|
||
global p_train_GPT
|
||
if p_train_GPT != None:
|
||
kill_process(p_train_GPT.pid)
|
||
p_train_GPT = None
|
||
return (
|
||
"已终止GPT训练",
|
||
{"__type__": "update", "visible": True},
|
||
{"__type__": "update", "visible": False},
|
||
)
|
||
|
||
|
||
ps_slice = []
|
||
|
||
|
||
def open_slice(
|
||
inp,
|
||
opt_root,
|
||
threshold,
|
||
min_length,
|
||
min_interval,
|
||
hop_size,
|
||
max_sil_kept,
|
||
_max,
|
||
alpha,
|
||
n_parts,
|
||
):
|
||
global ps_slice
|
||
if os.path.exists(inp) == False:
|
||
yield "输入路径不存在", {"__type__": "update", "visible": True}, {
|
||
"__type__": "update",
|
||
"visible": False,
|
||
}
|
||
return
|
||
if os.path.isfile(inp):
|
||
n_parts = 1
|
||
elif os.path.isdir(inp):
|
||
pass
|
||
else:
|
||
yield "输入路径存在但既不是文件也不是文件夹", {"__type__": "update", "visible": True}, {
|
||
"__type__": "update",
|
||
"visible": False,
|
||
}
|
||
return
|
||
if ps_slice == []:
|
||
for i_part in range(n_parts):
|
||
cmd = (
|
||
'"%s" tools/slice_audio.py "%s" "%s" %s %s %s %s %s %s %s %s %s'
|
||
""
|
||
% (
|
||
python_exec,
|
||
inp,
|
||
opt_root,
|
||
threshold,
|
||
min_length,
|
||
min_interval,
|
||
hop_size,
|
||
max_sil_kept,
|
||
_max,
|
||
alpha,
|
||
i_part,
|
||
n_parts,
|
||
)
|
||
)
|
||
print(cmd)
|
||
p = Popen(cmd, shell=True)
|
||
ps_slice.append(p)
|
||
yield "切割执行中", {"__type__": "update", "visible": False}, {
|
||
"__type__": "update",
|
||
"visible": True,
|
||
}
|
||
for p in ps_slice:
|
||
p.wait()
|
||
ps_slice = []
|
||
yield "切割结束", {"__type__": "update", "visible": True}, {
|
||
"__type__": "update",
|
||
"visible": False,
|
||
}
|
||
else:
|
||
yield "已有正在进行的切割任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {
|
||
"__type__": "update",
|
||
"visible": True,
|
||
}
|
||
|
||
|
||
def close_slice():
|
||
global ps_slice
|
||
if ps_slice != []:
|
||
for p_slice in ps_slice:
|
||
try:
|
||
kill_process(p_slice.pid)
|
||
except:
|
||
traceback.print_exc()
|
||
ps_slice = []
|
||
return (
|
||
"已终止所有切割进程",
|
||
{"__type__": "update", "visible": True},
|
||
{"__type__": "update", "visible": False},
|
||
)
|
||
|
||
|
||
"""
|
||
inp_text= os.environ.get("inp_text")
|
||
inp_wav_dir= os.environ.get("inp_wav_dir")
|
||
exp_name= os.environ.get("exp_name")
|
||
i_part= os.environ.get("i_part")
|
||
all_parts= os.environ.get("all_parts")
|
||
os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES")
|
||
opt_dir= os.environ.get("opt_dir")#"/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name
|
||
bert_pretrained_dir= os.environ.get("bert_pretrained_dir")#"/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large"
|
||
"""
|
||
ps1a = []
|
||
|
||
|
||
def open1a(inp_text, inp_wav_dir, exp_name, gpu_numbers, bert_pretrained_dir):
|
||
global ps1a
|
||
if ps1a == []:
|
||
config = {
|
||
"inp_text": inp_text,
|
||
"inp_wav_dir": inp_wav_dir,
|
||
"exp_name": exp_name,
|
||
"opt_dir": "%s/%s" % (exp_root, exp_name),
|
||
"bert_pretrained_dir": bert_pretrained_dir,
|
||
}
|
||
gpu_names = gpu_numbers.split("-")
|
||
all_parts = len(gpu_names)
|
||
for i_part in range(all_parts):
|
||
config.update(
|
||
{
|
||
"i_part": str(i_part),
|
||
"all_parts": str(all_parts),
|
||
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
|
||
"is_half": str(is_half),
|
||
}
|
||
)
|
||
os.environ.update(config)
|
||
cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py' % python_exec
|
||
print(cmd)
|
||
p = Popen(cmd, shell=True)
|
||
ps1a.append(p)
|
||
yield "文本进程执行中", {"__type__": "update", "visible": False}, {
|
||
"__type__": "update",
|
||
"visible": True,
|
||
}
|
||
for p in ps1a:
|
||
p.wait()
|
||
ps1a = []
|
||
yield "文本进程结束", {"__type__": "update", "visible": True}, {
|
||
"__type__": "update",
|
||
"visible": False,
|
||
}
|
||
else:
|
||
yield "已有正在进行的文本任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {
|
||
"__type__": "update",
|
||
"visible": True,
|
||
}
|
||
|
||
|
||
def close1a():
|
||
global ps1a
|
||
if ps1a != []:
|
||
for p1a in ps1a:
|
||
try:
|
||
kill_process(p1a.pid)
|
||
except:
|
||
traceback.print_exc()
|
||
ps1a = []
|
||
return (
|
||
"已终止所有1a进程",
|
||
{"__type__": "update", "visible": True},
|
||
{"__type__": "update", "visible": False},
|
||
)
|
||
|
||
|
||
"""
|
||
inp_text= os.environ.get("inp_text")
|
||
inp_wav_dir= os.environ.get("inp_wav_dir")
|
||
exp_name= os.environ.get("exp_name")
|
||
i_part= os.environ.get("i_part")
|
||
all_parts= os.environ.get("all_parts")
|
||
os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES")
|
||
opt_dir= os.environ.get("opt_dir")
|
||
cnhubert.cnhubert_base_path= os.environ.get("cnhubert_base_dir")
|
||
"""
|
||
ps1b = []
|
||
|
||
|
||
def open1b(inp_text, inp_wav_dir, exp_name, gpu_numbers, ssl_pretrained_dir):
|
||
global ps1b
|
||
if ps1b == []:
|
||
config = {
|
||
"inp_text": inp_text,
|
||
"inp_wav_dir": inp_wav_dir,
|
||
"exp_name": exp_name,
|
||
"opt_dir": "%s/%s" % (exp_root, exp_name),
|
||
"cnhubert_base_dir": ssl_pretrained_dir,
|
||
"is_half": str(is_half),
|
||
}
|
||
gpu_names = gpu_numbers.split("-")
|
||
all_parts = len(gpu_names)
|
||
for i_part in range(all_parts):
|
||
config.update(
|
||
{
|
||
"i_part": str(i_part),
|
||
"all_parts": str(all_parts),
|
||
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
|
||
}
|
||
)
|
||
os.environ.update(config)
|
||
cmd = (
|
||
'"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py' % python_exec
|
||
)
|
||
print(cmd)
|
||
p = Popen(cmd, shell=True)
|
||
ps1b.append(p)
|
||
yield "SSL提取进程执行中", {"__type__": "update", "visible": False}, {
|
||
"__type__": "update",
|
||
"visible": True,
|
||
}
|
||
for p in ps1b:
|
||
p.wait()
|
||
ps1b = []
|
||
yield "SSL提取进程结束", {"__type__": "update", "visible": True}, {
|
||
"__type__": "update",
|
||
"visible": False,
|
||
}
|
||
else:
|
||
yield "已有正在进行的SSL提取任务,需先终止才能开启下一次任务", {
|
||
"__type__": "update",
|
||
"visible": False,
|
||
}, {"__type__": "update", "visible": True}
|
||
|
||
|
||
def close1b():
|
||
global ps1b
|
||
if ps1b != []:
|
||
for p1b in ps1b:
|
||
try:
|
||
kill_process(p1b.pid)
|
||
except:
|
||
traceback.print_exc()
|
||
ps1b = []
|
||
return (
|
||
"已终止所有1b进程",
|
||
{"__type__": "update", "visible": True},
|
||
{"__type__": "update", "visible": False},
|
||
)
|
||
|
||
|
||
"""
|
||
inp_text= os.environ.get("inp_text")
|
||
exp_name= os.environ.get("exp_name")
|
||
i_part= os.environ.get("i_part")
|
||
all_parts= os.environ.get("all_parts")
|
||
os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES")
|
||
opt_dir= os.environ.get("opt_dir")
|
||
pretrained_s2G= os.environ.get("pretrained_s2G")
|
||
"""
|
||
ps1c = []
|
||
|
||
|
||
def open1c(inp_text, exp_name, gpu_numbers, pretrained_s2G_path):
|
||
global ps1c
|
||
if ps1c == []:
|
||
config = {
|
||
"inp_text": inp_text,
|
||
"exp_name": exp_name,
|
||
"opt_dir": "%s/%s" % (exp_root, exp_name),
|
||
"pretrained_s2G": pretrained_s2G_path,
|
||
"s2config_path": "GPT_SoVITS/configs/s2.json",
|
||
"is_half": str(is_half),
|
||
}
|
||
gpu_names = gpu_numbers.split("-")
|
||
all_parts = len(gpu_names)
|
||
for i_part in range(all_parts):
|
||
config.update(
|
||
{
|
||
"i_part": str(i_part),
|
||
"all_parts": str(all_parts),
|
||
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
|
||
}
|
||
)
|
||
os.environ.update(config)
|
||
cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py' % python_exec
|
||
print(cmd)
|
||
p = Popen(cmd, shell=True)
|
||
ps1c.append(p)
|
||
yield "语义token提取进程执行中", {"__type__": "update", "visible": False}, {
|
||
"__type__": "update",
|
||
"visible": True,
|
||
}
|
||
for p in ps1c:
|
||
p.wait()
|
||
ps1c = []
|
||
yield "语义token提取进程结束", {"__type__": "update", "visible": True}, {
|
||
"__type__": "update",
|
||
"visible": False,
|
||
}
|
||
else:
|
||
yield "已有正在进行的语义token提取任务,需先终止才能开启下一次任务", {
|
||
"__type__": "update",
|
||
"visible": False,
|
||
}, {"__type__": "update", "visible": True}
|
||
|
||
|
||
def close1c():
|
||
global ps1c
|
||
if ps1c != []:
|
||
for p1c in ps1c:
|
||
try:
|
||
kill_process(p1c.pid)
|
||
except:
|
||
traceback.print_exc()
|
||
ps1c = []
|
||
return (
|
||
"已终止所有语义token进程",
|
||
{"__type__": "update", "visible": True},
|
||
{"__type__": "update", "visible": False},
|
||
)
|
||
|
||
|
||
#####inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,cnhubert_base_dir,pretrained_s2G
|
||
ps1abc = []
|
||
|
||
|
||
def open1abc(
|
||
inp_text,
|
||
inp_wav_dir,
|
||
exp_name,
|
||
gpu_numbers1a,
|
||
gpu_numbers1Ba,
|
||
gpu_numbers1c,
|
||
bert_pretrained_dir,
|
||
ssl_pretrained_dir,
|
||
pretrained_s2G_path,
|
||
):
|
||
global ps1abc
|
||
if ps1abc == []:
|
||
opt_dir = "%s/%s" % (exp_root, exp_name)
|
||
try:
|
||
#############################1a
|
||
path_text = "%s/2-name2text.txt" % opt_dir
|
||
if os.path.exists(path_text) == False:
|
||
config = {
|
||
"inp_text": inp_text,
|
||
"inp_wav_dir": inp_wav_dir,
|
||
"exp_name": exp_name,
|
||
"opt_dir": opt_dir,
|
||
"bert_pretrained_dir": bert_pretrained_dir,
|
||
"is_half": str(is_half),
|
||
}
|
||
gpu_names = gpu_numbers1a.split("-")
|
||
all_parts = len(gpu_names)
|
||
for i_part in range(all_parts):
|
||
config.update(
|
||
{
|
||
"i_part": str(i_part),
|
||
"all_parts": str(all_parts),
|
||
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
|
||
}
|
||
)
|
||
os.environ.update(config)
|
||
cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py' % python_exec
|
||
print(cmd)
|
||
p = Popen(cmd, shell=True)
|
||
ps1abc.append(p)
|
||
yield "进度:1a-ing", {"__type__": "update", "visible": False}, {
|
||
"__type__": "update",
|
||
"visible": True,
|
||
}
|
||
for p in ps1abc:
|
||
p.wait()
|
||
|
||
opt = []
|
||
for i_part in range(
|
||
all_parts
|
||
): # txt_path="%s/2-name2text-%s.txt"%(opt_dir,i_part)
|
||
txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part)
|
||
with open(txt_path, "r", encoding="utf8") as f:
|
||
opt += f.read().strip("\n").split("\n")
|
||
os.remove(txt_path)
|
||
with open(path_text, "w", encoding="utf8") as f:
|
||
f.write("\n".join(opt) + "\n")
|
||
|
||
yield "进度:1a-done", {"__type__": "update", "visible": False}, {
|
||
"__type__": "update",
|
||
"visible": True,
|
||
}
|
||
ps1abc = []
|
||
#############################1b
|
||
config = {
|
||
"inp_text": inp_text,
|
||
"inp_wav_dir": inp_wav_dir,
|
||
"exp_name": exp_name,
|
||
"opt_dir": opt_dir,
|
||
"cnhubert_base_dir": ssl_pretrained_dir,
|
||
}
|
||
gpu_names = gpu_numbers1Ba.split("-")
|
||
all_parts = len(gpu_names)
|
||
for i_part in range(all_parts):
|
||
config.update(
|
||
{
|
||
"i_part": str(i_part),
|
||
"all_parts": str(all_parts),
|
||
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
|
||
}
|
||
)
|
||
os.environ.update(config)
|
||
cmd = (
|
||
'"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py'
|
||
% python_exec
|
||
)
|
||
print(cmd)
|
||
p = Popen(cmd, shell=True)
|
||
ps1abc.append(p)
|
||
yield "进度:1a-done, 1b-ing", {"__type__": "update", "visible": False}, {
|
||
"__type__": "update",
|
||
"visible": True,
|
||
}
|
||
for p in ps1abc:
|
||
p.wait()
|
||
yield "进度:1a1b-done", {"__type__": "update", "visible": False}, {
|
||
"__type__": "update",
|
||
"visible": True,
|
||
}
|
||
ps1abc = []
|
||
#############################1c
|
||
path_semantic = "%s/6-name2semantic.tsv" % opt_dir
|
||
if os.path.exists(path_semantic) == False:
|
||
config = {
|
||
"inp_text": inp_text,
|
||
"exp_name": exp_name,
|
||
"opt_dir": opt_dir,
|
||
"pretrained_s2G": pretrained_s2G_path,
|
||
"s2config_path": "GPT_SoVITS/configs/s2.json",
|
||
}
|
||
gpu_names = gpu_numbers1c.split("-")
|
||
all_parts = len(gpu_names)
|
||
for i_part in range(all_parts):
|
||
config.update(
|
||
{
|
||
"i_part": str(i_part),
|
||
"all_parts": str(all_parts),
|
||
"_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
|
||
}
|
||
)
|
||
os.environ.update(config)
|
||
cmd = (
|
||
'"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py'
|
||
% python_exec
|
||
)
|
||
print(cmd)
|
||
p = Popen(cmd, shell=True)
|
||
ps1abc.append(p)
|
||
yield "进度:1a1b-done, 1cing", {"__type__": "update", "visible": False}, {
|
||
"__type__": "update",
|
||
"visible": True,
|
||
}
|
||
for p in ps1abc:
|
||
p.wait()
|
||
|
||
opt = ["item_name semantic_audio"]
|
||
for i_part in range(all_parts):
|
||
semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part)
|
||
with open(semantic_path, "r", encoding="utf8") as f:
|
||
opt += f.read().strip("\n").split("\n")
|
||
os.remove(semantic_path)
|
||
with open(path_semantic, "w", encoding="utf8") as f:
|
||
f.write("\n".join(opt) + "\n")
|
||
yield "进度:all-done", {"__type__": "update", "visible": False}, {
|
||
"__type__": "update",
|
||
"visible": True,
|
||
}
|
||
ps1abc = []
|
||
yield "一键三连进程结束", {"__type__": "update", "visible": True}, {
|
||
"__type__": "update",
|
||
"visible": False,
|
||
}
|
||
except:
|
||
traceback.print_exc()
|
||
close1abc()
|
||
yield "一键三连中途报错", {"__type__": "update", "visible": True}, {
|
||
"__type__": "update",
|
||
"visible": False,
|
||
}
|
||
else:
|
||
yield "已有正在进行的一键三连任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {
|
||
"__type__": "update",
|
||
"visible": True,
|
||
}
|
||
|
||
|
||
def close1abc():
|
||
global ps1abc
|
||
if ps1abc != []:
|
||
for p1abc in ps1abc:
|
||
try:
|
||
kill_process(p1abc.pid)
|
||
except:
|
||
traceback.print_exc()
|
||
ps1abc = []
|
||
return (
|
||
"已终止所有一键三连进程",
|
||
{"__type__": "update", "visible": True},
|
||
{"__type__": "update", "visible": False},
|
||
)
|
||
|
||
|
||
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||
gr.Markdown(
|
||
value="本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>."
|
||
)
|
||
with gr.Tabs():
|
||
with gr.TabItem("0-前置数据集获取工具"): # 提前随机切片防止uvr5爆内存->uvr5->slicer->asr->打标
|
||
gr.Markdown(value="0a-UVR5人声伴奏分离&去混响去延迟工具")
|
||
with gr.Row():
|
||
if_uvr5 = gr.Checkbox(label="是否开启UVR5-WebUI", show_label=True)
|
||
uvr5_info = gr.Textbox(label="UVR5进程输出信息")
|
||
gr.Markdown(value="0b-语音切分工具")
|
||
with gr.Row():
|
||
with gr.Row():
|
||
slice_inp_path = gr.Textbox(label="音频自动切分输入路径,可文件可文件夹", value="")
|
||
slice_opt_root = gr.Textbox(
|
||
label="切分后的子音频的输出根目录", value="output/slicer_opt"
|
||
)
|
||
threshold = gr.Textbox(
|
||
label="threshold:音量小于这个值视作静音的备选切割点", value="-34"
|
||
)
|
||
min_length = gr.Textbox(
|
||
label="min_length:每段最小多长,如果第一段太短一直和后面段连起来直到超过这个值", value="4000"
|
||
)
|
||
min_interval = gr.Textbox(label="min_interval:最短切割间隔", value="300")
|
||
hop_size = gr.Textbox(
|
||
label="hop_size:怎么算音量曲线,越小精度越大计算量越高(不是精度越大效果越好)", value="10"
|
||
)
|
||
max_sil_kept = gr.Textbox(
|
||
label="max_sil_kept:切完后静音最多留多长", value="500"
|
||
)
|
||
with gr.Row():
|
||
open_slicer_button = gr.Button(
|
||
"开启语音切割", variant="primary", visible=True
|
||
)
|
||
close_slicer_button = gr.Button(
|
||
"终止语音切割", variant="primary", visible=False
|
||
)
|
||
_max = gr.Slider(
|
||
minimum=0,
|
||
maximum=1,
|
||
step=0.05,
|
||
label="max:归一化后最大值多少",
|
||
value=0.9,
|
||
interactive=True,
|
||
)
|
||
alpha = gr.Slider(
|
||
minimum=0,
|
||
maximum=1,
|
||
step=0.05,
|
||
label="alpha_mix:混多少比例归一化后音频进来",
|
||
value=0.25,
|
||
interactive=True,
|
||
)
|
||
n_process = gr.Slider(
|
||
minimum=1,
|
||
maximum=n_cpu,
|
||
step=1,
|
||
label="切割使用的进程数",
|
||
value=4,
|
||
interactive=True,
|
||
)
|
||
slicer_info = gr.Textbox(label="语音切割进程输出信息")
|
||
gr.Markdown(value="0c-中文批量离线ASR工具")
|
||
with gr.Row():
|
||
open_asr_button = gr.Button(
|
||
"开启离线批量ASR", variant="primary", visible=True
|
||
)
|
||
close_asr_button = gr.Button(
|
||
"终止ASR进程", variant="primary", visible=False
|
||
)
|
||
asr_inp_dir = gr.Textbox(
|
||
label="批量ASR(中文only)输入文件夹路径",
|
||
value="D:\\RVC1006\\GPT-SoVITS\\raw\\xxx",
|
||
interactive=True,
|
||
)
|
||
asr_info = gr.Textbox(label="ASR进程输出信息")
|
||
gr.Markdown(value="0d-语音文本校对标注工具")
|
||
with gr.Row():
|
||
if_label = gr.Checkbox(label="是否开启打标WebUI", show_label=True)
|
||
path_list = gr.Textbox(
|
||
label="打标数据标注文件路径",
|
||
value="D:\\RVC1006\\GPT-SoVITS\\raw\\xxx.list",
|
||
interactive=True,
|
||
)
|
||
label_info = gr.Textbox(label="打标工具进程输出信息")
|
||
if_label.change(change_label, [if_label, path_list], [label_info])
|
||
if_uvr5.change(change_uvr5, [if_uvr5], [uvr5_info])
|
||
open_asr_button.click(
|
||
open_asr, [asr_inp_dir], [asr_info, open_asr_button, close_asr_button]
|
||
)
|
||
close_asr_button.click(
|
||
close_asr, [], [asr_info, open_asr_button, close_asr_button]
|
||
)
|
||
open_slicer_button.click(
|
||
open_slice,
|
||
[
|
||
slice_inp_path,
|
||
slice_opt_root,
|
||
threshold,
|
||
min_length,
|
||
min_interval,
|
||
hop_size,
|
||
max_sil_kept,
|
||
_max,
|
||
alpha,
|
||
n_process,
|
||
],
|
||
[slicer_info, open_slicer_button, close_slicer_button],
|
||
)
|
||
close_slicer_button.click(
|
||
close_slice, [], [slicer_info, open_slicer_button, close_slicer_button]
|
||
)
|
||
with gr.TabItem("1-GPT-SoVITS-TTS"):
|
||
with gr.Row():
|
||
exp_name = gr.Textbox(label="*实验/模型名", value="xxx", interactive=True)
|
||
gpu_info = gr.Textbox(
|
||
label="显卡信息", value=gpu_info, visible=True, interactive=False
|
||
)
|
||
pretrained_s2G = gr.Textbox(
|
||
label="预训练的SoVITS-G模型路径",
|
||
value="GPT_SoVITS/pretrained_models/s2G488k.pth",
|
||
interactive=True,
|
||
)
|
||
pretrained_s2D = gr.Textbox(
|
||
label="预训练的SoVITS-D模型路径",
|
||
value="GPT_SoVITS/pretrained_models/s2D488k.pth",
|
||
interactive=True,
|
||
)
|
||
pretrained_s1 = gr.Textbox(
|
||
label="预训练的GPT模型路径",
|
||
value="GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
|
||
interactive=True,
|
||
)
|
||
with gr.TabItem("1A-训练集格式化工具"):
|
||
gr.Markdown(value="输出logs/实验名目录下应有23456开头的文件和文件夹")
|
||
with gr.Row():
|
||
inp_text = gr.Textbox(
|
||
label="*文本标注文件",
|
||
value=r"D:\RVC1006\GPT-SoVITS\raw\xxx.list",
|
||
interactive=True,
|
||
)
|
||
inp_wav_dir = gr.Textbox(
|
||
label="*训练集音频文件目录",
|
||
value=r"D:\RVC1006\GPT-SoVITS\raw\xxx",
|
||
interactive=True,
|
||
)
|
||
gr.Markdown(value="1Aa-文本内容")
|
||
with gr.Row():
|
||
gpu_numbers1a = gr.Textbox(
|
||
label="GPU卡号以-分割,每个卡号一个进程",
|
||
value="%s-%s" % (gpus, gpus),
|
||
interactive=True,
|
||
)
|
||
bert_pretrained_dir = gr.Textbox(
|
||
label="预训练的中文BERT模型路径",
|
||
value="GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
|
||
interactive=False,
|
||
)
|
||
button1a_open = gr.Button("开启文本获取", variant="primary", visible=True)
|
||
button1a_close = gr.Button(
|
||
"终止文本获取进程", variant="primary", visible=False
|
||
)
|
||
info1a = gr.Textbox(label="文本进程输出信息")
|
||
gr.Markdown(value="1Ab-SSL自监督特征提取")
|
||
with gr.Row():
|
||
gpu_numbers1Ba = gr.Textbox(
|
||
label="GPU卡号以-分割,每个卡号一个进程",
|
||
value="%s-%s" % (gpus, gpus),
|
||
interactive=True,
|
||
)
|
||
cnhubert_base_dir = gr.Textbox(
|
||
label="预训练的SSL模型路径",
|
||
value="GPT_SoVITS/pretrained_models/chinese-hubert-base",
|
||
interactive=False,
|
||
)
|
||
button1b_open = gr.Button(
|
||
"开启SSL提取", variant="primary", visible=True
|
||
)
|
||
button1b_close = gr.Button(
|
||
"终止SSL提取进程", variant="primary", visible=False
|
||
)
|
||
info1b = gr.Textbox(label="SSL进程输出信息")
|
||
gr.Markdown(value="1Ac-语义token提取")
|
||
with gr.Row():
|
||
gpu_numbers1c = gr.Textbox(
|
||
label="GPU卡号以-分割,每个卡号一个进程",
|
||
value="%s-%s" % (gpus, gpus),
|
||
interactive=True,
|
||
)
|
||
button1c_open = gr.Button(
|
||
"开启语义token提取", variant="primary", visible=True
|
||
)
|
||
button1c_close = gr.Button(
|
||
"终止语义token提取进程", variant="primary", visible=False
|
||
)
|
||
info1c = gr.Textbox(label="语义token提取进程输出信息")
|
||
gr.Markdown(value="1Aabc-训练集格式化一键三连")
|
||
with gr.Row():
|
||
button1abc_open = gr.Button(
|
||
"开启一键三连", variant="primary", visible=True
|
||
)
|
||
button1abc_close = gr.Button(
|
||
"终止一键三连", variant="primary", visible=False
|
||
)
|
||
info1abc = gr.Textbox(label="一键三连进程输出信息")
|
||
button1a_open.click(
|
||
open1a,
|
||
[inp_text, inp_wav_dir, exp_name, gpu_numbers1a, bert_pretrained_dir],
|
||
[info1a, button1a_open, button1a_close],
|
||
)
|
||
button1a_close.click(close1a, [], [info1a, button1a_open, button1a_close])
|
||
button1b_open.click(
|
||
open1b,
|
||
[inp_text, inp_wav_dir, exp_name, gpu_numbers1Ba, cnhubert_base_dir],
|
||
[info1b, button1b_open, button1b_close],
|
||
)
|
||
button1b_close.click(close1b, [], [info1b, button1b_open, button1b_close])
|
||
button1c_open.click(
|
||
open1c,
|
||
[inp_text, exp_name, gpu_numbers1c, pretrained_s2G],
|
||
[info1c, button1c_open, button1c_close],
|
||
)
|
||
button1c_close.click(close1c, [], [info1c, button1c_open, button1c_close])
|
||
button1abc_open.click(
|
||
open1abc,
|
||
[
|
||
inp_text,
|
||
inp_wav_dir,
|
||
exp_name,
|
||
gpu_numbers1a,
|
||
gpu_numbers1Ba,
|
||
gpu_numbers1c,
|
||
bert_pretrained_dir,
|
||
cnhubert_base_dir,
|
||
pretrained_s2G,
|
||
],
|
||
[info1abc, button1abc_open, button1abc_close],
|
||
)
|
||
button1abc_close.click(
|
||
close1abc, [], [info1abc, button1abc_open, button1abc_close]
|
||
)
|
||
with gr.TabItem("1B-微调训练"):
|
||
gr.Markdown(value="1Ba-SoVITS训练。用于分享的模型文件输出在SoVITS_weights下。")
|
||
with gr.Row():
|
||
batch_size = gr.Slider(
|
||
minimum=1,
|
||
maximum=40,
|
||
step=1,
|
||
label=i18n("每张显卡的batch_size"),
|
||
value=default_batch_size,
|
||
interactive=True,
|
||
)
|
||
total_epoch = gr.Slider(
|
||
minimum=1,
|
||
maximum=20,
|
||
step=1,
|
||
label=i18n("总训练轮数total_epoch,不建议太高"),
|
||
value=8,
|
||
interactive=True,
|
||
)
|
||
text_low_lr_rate = gr.Slider(
|
||
minimum=0.2,
|
||
maximum=0.6,
|
||
step=0.05,
|
||
label="文本模块学习率权重",
|
||
value=0.4,
|
||
interactive=True,
|
||
)
|
||
save_every_epoch = gr.Slider(
|
||
minimum=1,
|
||
maximum=50,
|
||
step=1,
|
||
label=i18n("保存频率save_every_epoch"),
|
||
value=4,
|
||
interactive=True,
|
||
)
|
||
if_save_latest = gr.Checkbox(
|
||
label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"),
|
||
value=True,
|
||
interactive=True,
|
||
show_label=True,
|
||
)
|
||
if_save_every_weights = gr.Checkbox(
|
||
label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"),
|
||
value=True,
|
||
interactive=True,
|
||
show_label=True,
|
||
)
|
||
gpu_numbers1Ba = gr.Textbox(
|
||
label="GPU卡号以-分割,每个卡号一个进程",
|
||
value="%s" % (gpus),
|
||
interactive=True,
|
||
)
|
||
with gr.Row():
|
||
button1Ba_open = gr.Button(
|
||
"开启SoVITS训练", variant="primary", visible=True
|
||
)
|
||
button1Ba_close = gr.Button(
|
||
"终止SoVITS训练", variant="primary", visible=False
|
||
)
|
||
info1Ba = gr.Textbox(label="SoVITS训练进程输出信息")
|
||
gr.Markdown(value="1Bb-GPT训练。用于分享的模型文件输出在GPT_weights下。")
|
||
with gr.Row():
|
||
batch_size1Bb = gr.Slider(
|
||
minimum=1,
|
||
maximum=40,
|
||
step=1,
|
||
label=i18n("每张显卡的batch_size"),
|
||
value=default_batch_size,
|
||
interactive=True,
|
||
)
|
||
total_epoch1Bb = gr.Slider(
|
||
minimum=2,
|
||
maximum=100,
|
||
step=1,
|
||
label=i18n("总训练轮数total_epoch"),
|
||
value=15,
|
||
interactive=True,
|
||
)
|
||
if_save_latest1Bb = gr.Checkbox(
|
||
label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"),
|
||
value=True,
|
||
interactive=True,
|
||
show_label=True,
|
||
)
|
||
if_save_every_weights1Bb = gr.Checkbox(
|
||
label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"),
|
||
value=True,
|
||
interactive=True,
|
||
show_label=True,
|
||
)
|
||
save_every_epoch1Bb = gr.Slider(
|
||
minimum=1,
|
||
maximum=50,
|
||
step=1,
|
||
label=i18n("保存频率save_every_epoch"),
|
||
value=5,
|
||
interactive=True,
|
||
)
|
||
gpu_numbers1Bb = gr.Textbox(
|
||
label="GPU卡号以-分割,每个卡号一个进程",
|
||
value="%s" % (gpus),
|
||
interactive=True,
|
||
)
|
||
with gr.Row():
|
||
button1Bb_open = gr.Button(
|
||
"开启GPT训练", variant="primary", visible=True
|
||
)
|
||
button1Bb_close = gr.Button(
|
||
"终止GPT训练", variant="primary", visible=False
|
||
)
|
||
info1Bb = gr.Textbox(label="GPT训练进程输出信息")
|
||
button1Ba_open.click(
|
||
open1Ba,
|
||
[
|
||
batch_size,
|
||
total_epoch,
|
||
exp_name,
|
||
text_low_lr_rate,
|
||
if_save_latest,
|
||
if_save_every_weights,
|
||
save_every_epoch,
|
||
gpu_numbers1Ba,
|
||
pretrained_s2G,
|
||
pretrained_s2D,
|
||
],
|
||
[info1Ba, button1Ba_open, button1Ba_close],
|
||
)
|
||
button1Ba_close.click(
|
||
close1Ba, [], [info1Ba, button1Ba_open, button1Ba_close]
|
||
)
|
||
button1Bb_open.click(
|
||
open1Bb,
|
||
[
|
||
batch_size1Bb,
|
||
total_epoch1Bb,
|
||
exp_name,
|
||
if_save_latest1Bb,
|
||
if_save_every_weights1Bb,
|
||
save_every_epoch1Bb,
|
||
gpu_numbers1Bb,
|
||
pretrained_s1,
|
||
],
|
||
[info1Bb, button1Bb_open, button1Bb_close],
|
||
)
|
||
button1Bb_close.click(
|
||
close1Bb, [], [info1Bb, button1Bb_open, button1Bb_close]
|
||
)
|
||
with gr.TabItem("1C-推理"):
|
||
gr.Markdown(
|
||
value="选择训练完存放在SoVITS_weights和GPT_weights下的模型。默认的一个是底模,体验5秒Zero Shot TTS用。"
|
||
)
|
||
with gr.Row():
|
||
GPT_dropdown = gr.Dropdown(
|
||
label="*GPT模型列表",
|
||
choices=sorted(GPT_names),
|
||
value=pretrained_gpt_name,
|
||
)
|
||
SoVITS_dropdown = gr.Dropdown(
|
||
label="*SoVITS模型列表",
|
||
choices=sorted(SoVITS_names),
|
||
value=pretrained_sovits_name,
|
||
)
|
||
gpu_number_1C = gr.Textbox(
|
||
label="GPU卡号,只能填1个整数", value=gpus, interactive=True
|
||
)
|
||
refresh_button = gr.Button("刷新模型路径", variant="primary")
|
||
refresh_button.click(
|
||
fn=change_choices,
|
||
inputs=[],
|
||
outputs=[SoVITS_dropdown, GPT_dropdown],
|
||
)
|
||
with gr.Row():
|
||
if_tts = gr.Checkbox(label="是否开启TTS推理WebUI", show_label=True)
|
||
tts_info = gr.Textbox(label="TTS推理WebUI进程输出信息")
|
||
if_tts.change(
|
||
change_tts_inference,
|
||
[
|
||
if_tts,
|
||
bert_pretrained_dir,
|
||
cnhubert_base_dir,
|
||
gpu_number_1C,
|
||
GPT_dropdown,
|
||
SoVITS_dropdown,
|
||
],
|
||
[tts_info],
|
||
)
|
||
with gr.TabItem("2-GPT-SoVITS-变声"):
|
||
gr.Markdown(value="施工中,请静候佳音")
|
||
|
||
"""
|
||
os.environ["gpt_path"]=gpt_path
|
||
os.environ["sovits_path"]=sovits_path#bert_pretrained_dir
|
||
os.environ["cnhubert_base_path"]=cnhubert_base_path#cnhubert_base_dir
|
||
os.environ["bert_path"]=bert_path
|
||
os.environ["_CUDA_VISIBLE_DEVICES"]=gpu_number
|
||
"""
|
||
|
||
app.queue(concurrency_count=511, max_size=1022).launch(
|
||
server_name="0.0.0.0",
|
||
inbrowser=True,
|
||
server_port=webui_port_main,
|
||
quiet=True,
|
||
)
|