GPT-SoVITS/GPT_SoVITS/inference_webui.py
2024-07-21 01:17:48 +08:00

859 lines
34 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

'''
按中英混合识别
按日英混合识别
多语种启动切分识别语种
全部按中文识别
全部按英文识别
全部按日文识别
'''
import os, re, logging
import LangSegment
logging.getLogger("markdown_it").setLevel(logging.ERROR)
logging.getLogger("urllib3").setLevel(logging.ERROR)
logging.getLogger("httpcore").setLevel(logging.ERROR)
logging.getLogger("httpx").setLevel(logging.ERROR)
logging.getLogger("asyncio").setLevel(logging.ERROR)
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
import pdb
import torch
import shutil
from scipy.io import wavfile
if os.path.exists("./gweight.txt"):
with open("./gweight.txt", 'r', encoding="utf-8") as file:
gweight_data = file.read()
gpt_path = os.environ.get(
"gpt_path", gweight_data)
else:
gpt_path = os.environ.get(
"gpt_path", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt")
if os.path.exists("./sweight.txt"):
with open("./sweight.txt", 'r', encoding="utf-8") as file:
sweight_data = file.read()
sovits_path = os.environ.get("sovits_path", sweight_data)
else:
sovits_path = os.environ.get("sovits_path", "GPT_SoVITS/pretrained_models/s2G488k.pth")
# gpt_path = os.environ.get(
# "gpt_path", "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
# )
# sovits_path = os.environ.get("sovits_path", "pretrained_models/s2G488k.pth")
cnhubert_base_path = os.environ.get(
"cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base"
)
bert_path = os.environ.get(
"bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
)
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
infer_ttswebui = int(infer_ttswebui)
is_share = os.environ.get("is_share", "False")
is_share = eval(is_share)
if "_CUDA_VISIBLE_DEVICES" in os.environ:
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
punctuation = set(['!', '?', '', ',', '.', '-'," "])
import gradio as gr
from transformers import AutoModelForMaskedLM, AutoTokenizer
import numpy as np
import librosa
from feature_extractor import cnhubert
cnhubert.cnhubert_base_path = cnhubert_base_path
from module.models import SynthesizerTrn
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from text import cleaned_text_to_sequence
from text.cleaner import clean_text
from time import time as ttime
from module.mel_processing import spectrogram_torch
from tools.my_utils import load_audio
from tools.i18n.i18n import I18nAuto
i18n = I18nAuto()
# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
if is_half == True:
bert_model = bert_model.half().to(device)
else:
bert_model = bert_model.to(device)
def get_bert_feature(text, word2ph):
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(device)
res = bert_model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
assert len(word2ph) == len(text)
phone_level_feature = []
for i in range(len(word2ph)):
repeat_feature = res[i].repeat(word2ph[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
return phone_level_feature.T
class DictToAttrRecursive(dict):
def __init__(self, input_dict):
super().__init__(input_dict)
for key, value in input_dict.items():
if isinstance(value, dict):
value = DictToAttrRecursive(value)
self[key] = value
setattr(self, key, value)
def __getattr__(self, item):
try:
return self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
def __setattr__(self, key, value):
if isinstance(value, dict):
value = DictToAttrRecursive(value)
super(DictToAttrRecursive, self).__setitem__(key, value)
super().__setattr__(key, value)
def __delattr__(self, item):
try:
del self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
ssl_model = cnhubert.get_model()
if is_half == True:
ssl_model = ssl_model.half().to(device)
else:
ssl_model = ssl_model.to(device)
def change_sovits_weights(sovits_path):
global vq_model, hps
dict_s2 = torch.load(sovits_path, map_location="cpu")
hps = dict_s2["config"]
hps = DictToAttrRecursive(hps)
hps.model.semantic_frame_rate = "25hz"
vq_model = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model
)
if ("pretrained" not in sovits_path):
del vq_model.enc_q
if is_half == True:
vq_model = vq_model.half().to(device)
else:
vq_model = vq_model.to(device)
vq_model.eval()
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
with open("./sweight.txt", "w", encoding="utf-8") as f:
f.write(sovits_path)
change_sovits_weights(sovits_path)
def change_gpt_weights(gpt_path):
global hz, max_sec, t2s_model, config
hz = 50
dict_s1 = torch.load(gpt_path, map_location="cpu")
config = dict_s1["config"]
max_sec = config["data"]["max_sec"]
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
t2s_model.load_state_dict(dict_s1["weight"])
if is_half == True:
t2s_model = t2s_model.half()
t2s_model = t2s_model.to(device)
t2s_model.eval()
total = sum([param.nelement() for param in t2s_model.parameters()])
print("Number of parameter: %.2fM" % (total / 1e6))
with open("./gweight.txt", "w", encoding="utf-8") as f: f.write(gpt_path)
change_gpt_weights(gpt_path)
def get_spepc(hps, filename):
audio = load_audio(filename, int(hps.data.sampling_rate))
audio = torch.FloatTensor(audio)
audio_norm = audio
audio_norm = audio_norm.unsqueeze(0)
spec = spectrogram_torch(
audio_norm,
hps.data.filter_length,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
center=False,
)
return spec
dict_language = {
i18n("中文"): "all_zh",#全部按中文识别
i18n("英文"): "en",#全部按英文识别#######不变
i18n("日文"): "all_ja",#全部按日文识别
i18n("中英混合"): "zh",#按中英混合识别####不变
i18n("日英混合"): "ja",#按日英混合识别####不变
i18n("多语种混合"): "auto",#多语种启动切分识别语种
}
def clean_text_inf(text, language):
phones, word2ph, norm_text = clean_text(text, language)
phones = cleaned_text_to_sequence(phones)
return phones, word2ph, norm_text
dtype=torch.float16 if is_half == True else torch.float32
def get_bert_inf(phones, word2ph, norm_text, language):
language=language.replace("all_","")
if language == "zh":
bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
else:
bert = torch.zeros(
(1024, len(phones)),
dtype=torch.float16 if is_half == True else torch.float32,
).to(device)
return bert
splits = {"", "", "", "", ",", ".", "?", "!", "~", ":", "", "", "", }
def get_first(text):
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
text = re.split(pattern, text)[0].strip()
return text
def get_phones_and_bert(text,language):
if language in {"en","all_zh","all_ja"}:
language = language.replace("all_","")
if language == "en":
LangSegment.setfilters(["en"])
formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text))
else:
# 因无法区别中日文汉字,以用户输入为准
formattext = text
while " " in formattext:
formattext = formattext.replace(" ", " ")
phones, word2ph, norm_text = clean_text_inf(formattext, language)
if language == "zh":
bert = get_bert_feature(norm_text, word2ph).to(device)
else:
bert = torch.zeros(
(1024, len(phones)),
dtype=torch.float16 if is_half == True else torch.float32,
).to(device)
elif language in {"zh", "ja","auto"}:
textlist=[]
langlist=[]
LangSegment.setfilters(["zh","ja","en","ko"])
if language == "auto":
for tmp in LangSegment.getTexts(text):
if tmp["lang"] == "ko":
langlist.append("zh")
textlist.append(tmp["text"])
else:
langlist.append(tmp["lang"])
textlist.append(tmp["text"])
else:
for tmp in LangSegment.getTexts(text):
if tmp["lang"] == "en":
langlist.append(tmp["lang"])
else:
# 因无法区别中日文汉字,以用户输入为准
langlist.append(language)
textlist.append(tmp["text"])
print(textlist)
print(langlist)
phones_list = []
bert_list = []
norm_text_list = []
for i in range(len(textlist)):
lang = langlist[i]
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
bert = get_bert_inf(phones, word2ph, norm_text, lang)
phones_list.append(phones)
norm_text_list.append(norm_text)
bert_list.append(bert)
bert = torch.cat(bert_list, dim=1)
phones = sum(phones_list, [])
norm_text = ''.join(norm_text_list)
return phones,bert.to(dtype),norm_text
def merge_short_text_in_array(texts, threshold):
if (len(texts)) < 2:
return texts
result = []
text = ""
for ele in texts:
text += ele
if len(text) >= threshold:
result.append(text)
text = ""
if (len(text) > 0):
if len(result) == 0:
result.append(text)
else:
result[len(result) - 1] += text
return result
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6, interval=0.3, ref_free = False):
if prompt_text is None or len(prompt_text) == 0:
ref_free = True
t0 = ttime()
prompt_language = dict_language[prompt_language]
text_language = dict_language[text_language]
if not ref_free:
prompt_text = prompt_text.strip("\n")
if (prompt_text[-1] not in splits): prompt_text += "" if prompt_language != "en" else "."
print(i18n("实际输入的参考文本:"), prompt_text)
text = text.strip("\n")
text = replace_consecutive_punctuation(text)
if (text[0] not in splits and len(get_first(text)) < 4): text = "" + text if text_language != "en" else "." + text
print(i18n("实际输入的目标文本:"), text)
zero_wav = np.zeros(
int(hps.data.sampling_rate * interval),
dtype=np.float16 if is_half == True else np.float32,
)
if not ref_free:
with torch.no_grad():
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
raise OSError(i18n("参考音频在3~10秒范围外请更换"))
wav16k = torch.from_numpy(wav16k)
zero_wav_torch = torch.from_numpy(zero_wav)
if is_half == True:
wav16k = wav16k.half().to(device)
zero_wav_torch = zero_wav_torch.half().to(device)
else:
wav16k = wav16k.to(device)
zero_wav_torch = zero_wav_torch.to(device)
wav16k = torch.cat([wav16k, zero_wav_torch])
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
"last_hidden_state"
].transpose(
1, 2
) # .float()
codes = vq_model.extract_latent(ssl_content)
prompt_semantic = codes[0, 0]
prompt = prompt_semantic.unsqueeze(0).to(device)
t1 = ttime()
if (how_to_cut == i18n("凑四句一切")):
text = cut1(text)
elif (how_to_cut == i18n("凑50字一切")):
text = cut2(text)
elif (how_to_cut == i18n("按中文句号。切")):
text = cut3(text)
elif (how_to_cut == i18n("按英文句号.切")):
text = cut4(text)
elif (how_to_cut == i18n("按标点符号切")):
text = cut5(text)
while "\n\n" in text:
text = text.replace("\n\n", "\n")
print(i18n("实际输入的目标文本(切句后):"), text)
texts = text.split("\n")
texts = process_text(texts)
texts = merge_short_text_in_array(texts, 5)
audio_opt = []
if not ref_free:
phones1,bert1,norm_text1=get_phones_and_bert(prompt_text, prompt_language)
for text in texts:
# 解决输入目标文本的空行导致报错的问题
if (len(text.strip()) == 0):
continue
if (text[-1] not in splits): text += "" if text_language != "en" else "."
print(i18n("实际输入的目标文本(每句):"), text)
phones2,bert2,norm_text2=get_phones_and_bert(text, text_language)
print(i18n("前端处理后的文本(每句):"), norm_text2)
if not ref_free:
bert = torch.cat([bert1, bert2], 1)
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
else:
bert = bert2
all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
t2 = ttime()
with torch.no_grad():
# pred_semantic = t2s_model.model.infer(
pred_semantic, idx = t2s_model.model.infer_panel(
all_phoneme_ids,
all_phoneme_len,
None if ref_free else prompt,
bert,
# prompt_phone_len=ph_offset,
top_k=top_k,
top_p=top_p,
temperature=temperature,
early_stop_num=hz * max_sec,
)
t3 = ttime()
# print(pred_semantic.shape,idx)
pred_semantic = pred_semantic[:, -idx:].unsqueeze(
0
) # .unsqueeze(0)#mq要多unsqueeze一次
refer = get_spepc(hps, ref_wav_path) # .to(device)
if is_half == True:
refer = refer.half().to(device)
else:
refer = refer.to(device)
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
audio = (
vq_model.decode(
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
)
.detach()
.cpu()
.numpy()[0, 0]
) ###试试重建不带上prompt部分
max_audio=np.abs(audio).max()#简单防止16bit爆音
if max_audio>1:audio/=max_audio
audio_opt.append(audio)
audio_opt.append(zero_wav)
t4 = ttime()
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
np.int16
)
# 指定保存音频的文件路径
file_path = 'moys/temp/audio.wav'
# 调用保存音频的函数
save_audio(hps.data.sampling_rate, np.concatenate(audio_opt, 0), file_path)
# 保存音频数据到文件
def save_audio(sampling_rate, audio_data, file_path):
# 确保音频数据是16位PCM格式
audio_data = np.int16(audio_data / np.max(np.abs(audio_data)) * 32767)
wavfile.write(file_path, sampling_rate, audio_data)
def split(todo_text):
todo_text = todo_text.replace("……", "").replace("——", "")
if todo_text[-1] not in splits:
todo_text += ""
i_split_head = i_split_tail = 0
len_text = len(todo_text)
todo_texts = []
while 1:
if i_split_head >= len_text:
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
if todo_text[i_split_head] in splits:
i_split_head += 1
todo_texts.append(todo_text[i_split_tail:i_split_head])
i_split_tail = i_split_head
else:
i_split_head += 1
return todo_texts
def cut1(inp):
inp = inp.strip("\n")
inps = split(inp)
split_idx = list(range(0, len(inps), 4))
split_idx[-1] = None
if len(split_idx) > 1:
opts = []
for idx in range(len(split_idx) - 1):
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
else:
opts = [inp]
opts = [item for item in opts if not set(item).issubset(punctuation)]
return "\n".join(opts)
def cut2(inp):
inp = inp.strip("\n")
inps = split(inp)
if len(inps) < 2:
return inp
opts = []
summ = 0
tmp_str = ""
for i in range(len(inps)):
summ += len(inps[i])
tmp_str += inps[i]
if summ > 50:
summ = 0
opts.append(tmp_str)
tmp_str = ""
if tmp_str != "":
opts.append(tmp_str)
# print(opts)
if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
opts[-2] = opts[-2] + opts[-1]
opts = opts[:-1]
opts = [item for item in opts if not set(item).issubset(punctuation)]
return "\n".join(opts)
def cut3(inp):
inp = inp.strip("\n")
opts = ["%s" % item for item in inp.strip("").split("")]
opts = [item for item in opts if not set(item).issubset(punctuation)]
return "\n".join(opts)
def cut4(inp):
inp = inp.strip("\n")
opts = ["%s" % item for item in inp.strip(".").split(".")]
opts = [item for item in opts if not set(item).issubset(punctuation)]
return "\n".join(opts)
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
def cut5(inp):
inp = inp.strip("\n")
punds = {',', '.', ';', '?', '!', '', '', '', '', '', ';', '', ''}
mergeitems = []
items = []
for i, char in enumerate(inp):
if char in punds:
if char == '.' and i > 0 and i < len(inp) - 1 and inp[i - 1].isdigit() and inp[i + 1].isdigit():
items.append(char)
else:
items.append(char)
mergeitems.append("".join(items))
items = []
else:
items.append(char)
if items:
mergeitems.append("".join(items))
opt = [item for item in mergeitems if not set(item).issubset(punds)]
return "\n".join(opt)
def custom_sort_key(s):
# 使用正则表达式提取字符串中的数字部分和非数字部分
parts = re.split('(\d+)', s)
# 将数字部分转换为整数,非数字部分保持不变
parts = [int(part) if part.isdigit() else part for part in parts]
return parts
def process_text(texts):
_text=[]
if all(text in [None, " ", "\n",""] for text in texts):
raise ValueError(i18n("请输入有效文本"))
for text in texts:
if text in [None, " ", ""]:
pass
else:
_text.append(text)
return _text
def replace_consecutive_punctuation(text):
punctuations = ''.join(re.escape(p) for p in punctuation)
pattern = f'([{punctuations}])([{punctuations}])+'
result = re.sub(pattern, r'\1', text)
return result
def change_choices():
SoVITS_names, GPT_names = get_weights_names()
return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"}
pretrained_sovits_name = "GPT_SoVITS/pretrained_models/s2G488k.pth"
pretrained_gpt_name = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
SoVITS_weight_root = "SoVITS_weights"
GPT_weight_root = "GPT_weights"
os.makedirs(SoVITS_weight_root, exist_ok=True)
os.makedirs(GPT_weight_root, exist_ok=True)
def get_weights_names():
SoVITS_names = [pretrained_sovits_name]
for name in os.listdir(SoVITS_weight_root):
if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (SoVITS_weight_root, name))
GPT_names = [pretrained_gpt_name]
for name in os.listdir(GPT_weight_root):
if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (GPT_weight_root, name))
return SoVITS_names, GPT_names
def save_model_config(GPT_dropdown, SoVITS_dropdown, inp_ref, prompt_text, prompt_language):
config_dir = "moys"
config_dir1 = r"moys\audio"
if not os.path.exists(config_dir):
os.makedirs(config_dir)
# 复制参考音频文件到配置目录
copy_ref_audio_path = os.path.join(config_dir1, os.path.basename(inp_ref))
shutil.copy(inp_ref, copy_ref_audio_path)
gpt_model_name = os.path.basename(GPT_dropdown).split('-')[0]
config_file_path = os.path.join(config_dir, f"{gpt_model_name}.txt")
with open(config_file_path, 'w', encoding='utf-8') as f:
f.write(f"GPT_model_path={GPT_dropdown}\n")
f.write(f"SoVITS_model_path={SoVITS_dropdown}\n")
f.write(f"ref_audio_path={copy_ref_audio_path}\n") # 修改写入的路径为复制文件的路径
f.write(f"ref_text={prompt_text}\n")
f.write(f"ref_audio_language={prompt_language}\n")
return f"Configuration saved to {config_file_path}"
def load_model_config(config_file_name):
config_dir = "moys"
# 因为 config_file_name 现在是字符串,我们直接使用它来构造文件路径
config_file_path = os.path.join(config_dir, config_file_name)
with open(config_file_path, 'r', encoding='utf-8') as f:
lines = f.readlines()
config = {}
for line in lines:
key, value = line.strip().split('=')
config[key] = value
# 返回一个包含所有组件期望值的字典
return (
config["GPT_model_path"],
config["SoVITS_model_path"],
config["ref_audio_path"],
config["ref_text"],
config["ref_audio_language"]
)
def refresh_config_files():
# 获取最新的配置文件列表
config_files = get_config_files()
# 创建一个新的文件名列表,只包含文件名
config_file_names = [os.path.basename(path) for path in config_files]
# 返回一个更新的配置,告诉 Gradio 更新下拉菜单的选项
return {"choices": config_file_names, "__type__": "update"}
# 辅助函数,用于处理 load_model_config 函数的输出
def handle_load_model_config(config_file_name, GPT_dropdown, SoVITS_dropdown, inp_ref, prompt_text, prompt_language):
# 调用原始函数获取配置
config = load_model_config(config_file_name)
# 更新组件的值
GPT_dropdown.update(value=config.get("GPT_model_path"))
SoVITS_dropdown.update(value=config.get("SoVITS_model_path"))
inp_ref.update(value=config.get("ref_audio_path"))
prompt_text.update(value=config.get("ref_text"))
prompt_language.update(value=config.get("ref_audio_language"))
def get_config_files():
config_dir = "moys"
if not os.path.exists(config_dir):
return []
return [os.path.join(config_dir, f) for f in os.listdir(config_dir) if f.endswith('.txt')]
def echo(input_text):
# 直接返回输入的文本
return input_text
def find_latest_wav(source_dir, dest_dir):
# 确保目标文件夹存在
if not os.path.exists(dest_dir):
os.makedirs(dest_dir)
# 初始化找到的wav文件路径
wav_file_path = None
# 遍历源文件夹
for root, dirs, files in os.walk(source_dir):
for file in files:
if file.lower().endswith('.wav'):
wav_file_path = os.path.join(root, file)
# 找到第一个wav文件就退出循环
break
if wav_file_path:
break # 确保找到文件后不再继续遍历
# 如果找到了wav文件复制到目标文件夹
if wav_file_path:
base_name = os.path.basename(wav_file_path)
file_name, file_ext = os.path.splitext(base_name)
dest_file_path = os.path.join(dest_dir, base_name)
# 检查目标文件夹中是否存在同名文件,并添加后缀以避免覆盖
counter = 1
while os.path.exists(dest_file_path):
new_name = f"{file_name}({counter}){file_ext}"
dest_file_path = os.path.join(dest_dir, new_name)
counter += 1
# 复制文件
shutil.copy2(wav_file_path, dest_file_path)
print(f"Copied WAV file to {dest_file_path}")
return dest_file_path # 返回复制的文件路径
else:
print("No WAV files found.")
return None # 没有找到 WAV 文件时返回 None
def on_download_click(textq_value):
source_directory = r'moys/temp' # 源文件夹路径
destination_directory = textq_value
# outputs.update_value(f"开始查找最新的WAV文件...")
result = find_latest_wav(source_directory, destination_directory) # 调用函数
# outputs.update_value(f"已保存到: {destination_directory}")
return f"{result}已保存到: {destination_directory}"
SoVITS_names, GPT_names = get_weights_names()
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
gr.Markdown(
value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.")
)
with gr.Group():
gr.Markdown(value=i18n("模型切换"))
with gr.Row():
GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=gpt_path, interactive=True)
SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True)
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary")
refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown], [])
GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], [])
gr.Markdown(value=i18n("*请上传并填写参考信息"))
with gr.Row():
inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频超过会报错"), type="filepath")
with gr.Column():
ref_text_free = gr.Checkbox(label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。"), value=False, interactive=True, show_label=True)
gr.Markdown(i18n("使用无参考文本模式时建议使用微调的GPT听不清参考音频说的啥(不晓得写啥)可以开,开启后无视填写的参考文本。"))
prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="")
prompt_language = gr.Dropdown(
label=i18n("参考音频的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文")
)
gr.Markdown(value=i18n("*请填写需要合成的目标文本和语种模式"))
with gr.Row():
text = gr.Textbox(label=i18n("需要合成的文本"), value="")
text_language = gr.Dropdown(
label=i18n("需要合成的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文")
)
how_to_cut = gr.Radio(
label=i18n("怎么切"),
choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ],
value=i18n("凑四句一切"),
interactive=True,
)
with gr.Row():
gr.Markdown(value=i18n("gpt采样参数(无参考文本时不要太低)"))
top_k = gr.Slider(minimum=1,maximum=100,step=1,label=i18n("top_k"),value=5,interactive=True)
top_p = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("top_p"),value=1,interactive=True)
temperature = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("temperature"),value=1,interactive=True)
interval = gr.Slider(minimum=0,maximum=5,step=0.02,label=i18n("interval"),value=0.3,interactive=True)
inference_button = gr.Button(i18n("合成语音"), variant="primary")
output = gr.Audio(label=i18n("输出的语音"))
with gr.Row():
# 创建文本框和下载按钮
download_button = gr.Button("下载语音", variant="primary")
textq = gr.Textbox(label="保存的语音路径", value="")
outputs0 = gr.Textbox(label=i18n("保存状态"), value="", interactive=False)
# 将事件处理函数绑定到按钮的点击事件
download_button.click(
on_download_click,
inputs=[textq], # 这里确保 textq 是正确的组件引用
outputs=[outputs0] # 这里确保 outputs 是正确的组件引用
)
inference_button.click(
get_tts_wav,
[inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut, top_k, top_p, temperature, interval, ref_text_free],
[output],
)
# Add new UI elements for saving and loading configurations
with gr.Row():
# 初始加载配置文件列表
config_files = get_config_files()
# 创建一个新的列表,只包含文件名
config_file_names = [os.path.basename(path) for path in config_files]
# 使用文件名列表作为 Dropdown 组件的选项
config_dropdown = gr.Dropdown(
label=i18n("加载模型配置"),
choices=config_file_names,
value=config_file_names[0] if config_file_names else None
)
# Output textbox for displaying save confirmation
save_output = gr.Textbox(label=i18n("保存配置状态"), value="", interactive=False)
# 绑定刷新按钮的点击事件
refresh_button = gr.Button(i18n("刷新配置文件列表"), variant="primary")
refresh_button.click(
fn=refresh_config_files, # 使用新创建的 refresh_config_files 函数
inputs=[], # 刷新按钮不需要输入
outputs=[config_dropdown] # 指定输出为 config_dropdown 组件,以更新其选项
)
# 绑定保存按钮的点击事件
save_button = gr.Button(i18n("保存模型配置"), variant="primary")
save_button.click(
fn=save_model_config,
inputs=[GPT_dropdown, SoVITS_dropdown, inp_ref, prompt_text, prompt_language],
outputs=[save_output]
)
# 绑定加载按钮的点击事件
load_button = gr.Button(i18n("加载模型配置"), variant="primary")
load_button.click(
fn=load_model_config, # 直接使用 load_model_config 函数
inputs=[config_dropdown], # config_dropdown 组件本身作为输入
outputs=[GPT_dropdown, SoVITS_dropdown, inp_ref, prompt_text, prompt_language] # 期望更新的组件列表
)
gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"))
with gr.Row():
text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="")
button1 = gr.Button(i18n("凑四句一切"), variant="primary")
button2 = gr.Button(i18n("凑50字一切"), variant="primary")
button3 = gr.Button(i18n("按中文句号。切"), variant="primary")
button4 = gr.Button(i18n("按英文句号.切"), variant="primary")
button5 = gr.Button(i18n("按标点符号切"), variant="primary")
button6 = gr.Button(i18n("推送"), variant="primary")
text_opt = gr.Textbox(label=i18n("切分后文本"), value="")
button1.click(cut1, [text_inp], [text_opt])
button2.click(cut2, [text_inp], [text_opt])
button3.click(cut3, [text_inp], [text_opt])
button4.click(cut4, [text_inp], [text_opt])
button5.click(cut5, [text_inp], [text_opt])
button6.click(echo, [text_opt], [text])
gr.Markdown(value=i18n("后续将支持转音素、手工修改音素、语音合成分步执行。"))
if __name__ == '__main__':
app.queue(concurrency_count=511, max_size=1022).launch(
server_name="0.0.0.0",
inbrowser=True,
share=is_share,
server_port=infer_ttswebui,
quiet=True,
)