mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-10-08 07:49:59 +08:00
430 lines
16 KiB
Python
430 lines
16 KiB
Python
"""
|
||
# WebAPI文档
|
||
|
||
` python api_v2.py -a 127.0.0.1 -p 9880 -c GPT_SoVITS/configs/tts_infer.yaml `
|
||
|
||
## 执行参数:
|
||
`-a` - `绑定地址, 默认"127.0.0.1"`
|
||
`-p` - `绑定端口, 默认9880`
|
||
`-c` - `TTS配置文件路径, 默认"GPT_SoVITS/configs/tts_infer.yaml"`
|
||
|
||
## 调用:
|
||
|
||
### 推理
|
||
|
||
endpoint: `/tts`
|
||
GET:
|
||
```
|
||
http://127.0.0.1:9880/tts?text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_lang=zh&ref_audio_path=archive_jingyuan_1.wav&prompt_lang=zh&prompt_text=我是「罗浮」云骑将军景元。不必拘谨,「将军」只是一时的身份,你称呼我景元便可&text_split_method=cut5&batch_size=1&media_type=wav&streaming_mode=true
|
||
```
|
||
|
||
POST:
|
||
```json
|
||
{
|
||
"text": "", # str.(required) text to be synthesized
|
||
"ref_audio_path": "", # str.(required) reference audio path.
|
||
"prompt_text": "", # str.(optional) prompt text for the reference audio
|
||
"text_lang": "auto", # str.(optional) language of the text to be synthesized
|
||
"prompt_lang": "auto", # str.(optional) language of the prompt text for the reference audio
|
||
"top_k": 5, # int.(optional) top k sampling
|
||
"top_p": 1, # float.(optional) top p sampling
|
||
"temperature": 1, # float.(optional) temperature for sampling
|
||
"text_split_method": "cut5", # str.(optional) text split method, see text_segmentation_method.py for details.
|
||
"batch_size": 1, # int.(optional) batch size for inference
|
||
"batch_threshold": 0.75, # float.(optional) threshold for batch splitting.
|
||
"split_bucket": true, # bool.(optional) whether to split the batch into multiple buckets.
|
||
"speed_factor":1.0, # float.(optional) control the speed of the synthesized audio.
|
||
"fragment_interval":0.3, # float.(optional) to control the interval of the audio fragment.
|
||
"seed": -1, # int.(optional) random seed for reproducibility.
|
||
"media_type": "wav", # str.(optional) media type of the output audio, support "wav", "raw", "ogg", "aac".
|
||
"streaming_mode": false, # bool.(optional) whether to return a streaming response.
|
||
}
|
||
```
|
||
|
||
RESP:
|
||
成功: 直接返回 wav 音频流, http code 200
|
||
失败: 返回包含错误信息的 json, http code 400
|
||
|
||
### 命令控制
|
||
|
||
endpoint: `/control`
|
||
|
||
command:
|
||
"restart": 重新运行
|
||
"exit": 结束运行
|
||
|
||
GET:
|
||
```
|
||
http://127.0.0.1:9880/control?command=restart
|
||
```
|
||
POST:
|
||
```json
|
||
{
|
||
"command": "restart"
|
||
}
|
||
```
|
||
|
||
RESP: 无
|
||
|
||
|
||
### 切换GPT模型
|
||
|
||
endpoint: `/set_gpt_weights`
|
||
|
||
GET:
|
||
```
|
||
http://127.0.0.1:9880/set_gpt_weights?weights_path=GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
||
```
|
||
RESP:
|
||
成功: 返回"success", http code 200
|
||
失败: 返回包含错误信息的 json, http code 400
|
||
|
||
|
||
### 切换Sovits模型
|
||
|
||
endpoint: `/set_sovits_weights`
|
||
|
||
GET:
|
||
```
|
||
http://127.0.0.1:9880/set_sovits_weights?weights_path=GPT_SoVITS/pretrained_models/s2G488k.pth
|
||
```
|
||
|
||
RESP:
|
||
成功: 返回"success", http code 200
|
||
失败: 返回包含错误信息的 json, http code 400
|
||
|
||
"""
|
||
import os
|
||
import sys
|
||
import traceback
|
||
from typing import Generator
|
||
|
||
now_dir = os.getcwd()
|
||
sys.path.append(now_dir)
|
||
sys.path.append("%s/GPT_SoVITS" % (now_dir))
|
||
|
||
import argparse
|
||
import subprocess
|
||
import wave
|
||
import signal
|
||
import numpy as np
|
||
import soundfile as sf
|
||
from fastapi import FastAPI, Request, HTTPException, Response
|
||
from fastapi.responses import StreamingResponse, JSONResponse
|
||
from fastapi import FastAPI, UploadFile, File
|
||
import uvicorn
|
||
from io import BytesIO
|
||
from tools.i18n.i18n import I18nAuto
|
||
from GPT_SoVITS.TTS_infer_pack.TTS import TTS, TTS_Config
|
||
from GPT_SoVITS.TTS_infer_pack.text_segmentation_method import get_method_names as get_cut_method_names
|
||
from fastapi.responses import StreamingResponse, FileResponse
|
||
from pydantic import BaseModel
|
||
import tempfile
|
||
|
||
from urllib.parse import unquote
|
||
|
||
# print(sys.path)
|
||
i18n = I18nAuto()
|
||
cut_method_names = get_cut_method_names()
|
||
|
||
parser = argparse.ArgumentParser(description="GPT-SoVITS api")
|
||
parser.add_argument("-c", "--tts_config", type=str, default="GPT_SoVITS/configs/tts_infer.yaml", help="tts_infer路径")
|
||
parser.add_argument("-a", "--bind_addr", type=str, default="127.0.0.1", help="default: 127.0.0.1")
|
||
parser.add_argument("-p", "--port", type=int, default="9880", help="default: 9880")
|
||
args = parser.parse_args()
|
||
config_path = args.tts_config
|
||
# device = args.device
|
||
port = args.port
|
||
host = args.bind_addr
|
||
argv = sys.argv
|
||
|
||
if config_path in [None, ""]:
|
||
config_path = "GPT-SoVITS/configs/tts_infer.yaml"
|
||
|
||
tts_config = TTS_Config(config_path)
|
||
tts_pipeline = TTS(tts_config)
|
||
|
||
APP = FastAPI()
|
||
|
||
# modified from https://github.com/X-T-E-R/GPT-SoVITS-Inference/blob/stable/Inference/src/TTS_Instance.py
|
||
class TTS_Request(BaseModel):
|
||
text: str = None
|
||
ref_audio_path: str = None
|
||
prompt_text: str = ""
|
||
text_lang: str = "auto"
|
||
prompt_lang: str = "auto"
|
||
top_k:int = 5
|
||
top_p:float = 1
|
||
temperature:float = 1
|
||
text_split_method:str = "cut5"
|
||
batch_size:int = 1
|
||
batch_threshold:float = 0.75
|
||
split_bucket:bool = True
|
||
speed_factor:float = 1.0
|
||
fragment_interval:float = 0.3
|
||
seed:int = -1
|
||
media_type:str = "wav"
|
||
streaming_mode:bool = False
|
||
|
||
# 青春版 from TTS_Task from https://github.com/X-T-E-R/GPT-SoVITS-Inference/blob/stable/Inference/src/TTS_Instance.py
|
||
def update(self, req:dict):
|
||
for key in req:
|
||
if hasattr(self, key):
|
||
type_ = type(getattr(self, key))
|
||
value = unquote(req[key])
|
||
if type_ == bool:
|
||
value = value.lower() in ["true", "1"]
|
||
elif type_ == int:
|
||
value = int(value)
|
||
elif type_ == float:
|
||
value = float(value)
|
||
setattr(self, key, value)
|
||
|
||
def to_dict(self):
|
||
return self.model_dump()
|
||
|
||
def check(self):
|
||
if (self.text_lang in [None, ""]) or self.text_lang.lower() not in tts_config.languages:
|
||
self.text_lang = "auto"
|
||
if (self.prompt_lang in [None, ""]) or self.prompt_lang.lower() not in tts_config.languages:
|
||
self.prompt_lang = "auto"
|
||
|
||
if self.text in [None, ""]:
|
||
return JSONResponse(status_code=400, content={"message": "text is required"})
|
||
if self.ref_audio_path in [None, ""]:
|
||
return JSONResponse(status_code=400, content={"message": "ref_audio_path is required"})
|
||
if self.streaming_mode and self.media_type not in ["wav", "raw", "ogg", "aac"]:
|
||
return JSONResponse(status_code=400, content={"message": f"media_type {self.media_type} is not supported in streaming mode"})
|
||
if self.text_split_method not in cut_method_names:
|
||
return JSONResponse(status_code=400, content={"message": f"text_split_method:{self.text_split_method} is not supported"})
|
||
return None
|
||
|
||
|
||
# 有点想删掉这些东西,为了streaming 写了一堆东西,但是貌似用streaming的时候,一般用的是wav
|
||
### modify from https://github.com/RVC-Boss/GPT-SoVITS/pull/894/files
|
||
def pack_ogg(io_buffer:BytesIO, data:np.ndarray, rate:int):
|
||
with sf.SoundFile(io_buffer, mode='w', samplerate=rate, channels=1, format='ogg') as audio_file:
|
||
audio_file.write(data)
|
||
return io_buffer
|
||
|
||
|
||
def pack_raw(io_buffer:BytesIO, data:np.ndarray, rate:int):
|
||
io_buffer.write(data.tobytes())
|
||
return io_buffer
|
||
|
||
|
||
def pack_wav(io_buffer:BytesIO, data:np.ndarray, rate:int):
|
||
io_buffer = BytesIO()
|
||
sf.write(io_buffer, data, rate, format='wav')
|
||
return io_buffer
|
||
|
||
def pack_aac(io_buffer:BytesIO, data:np.ndarray, rate:int):
|
||
process = subprocess.Popen([
|
||
'ffmpeg',
|
||
'-f', 's16le', # 输入16位有符号小端整数PCM
|
||
'-ar', str(rate), # 设置采样率
|
||
'-ac', '1', # 单声道
|
||
'-i', 'pipe:0', # 从管道读取输入
|
||
'-c:a', 'aac', # 音频编码器为AAC
|
||
'-b:a', '192k', # 比特率
|
||
'-vn', # 不包含视频
|
||
'-f', 'adts', # 输出AAC数据流格式
|
||
'pipe:1' # 将输出写入管道
|
||
], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
||
out, _ = process.communicate(input=data.tobytes())
|
||
io_buffer.write(out)
|
||
return io_buffer
|
||
|
||
def pack_audio(io_buffer:BytesIO, data:np.ndarray, rate:int, media_type:str):
|
||
if media_type == "ogg":
|
||
io_buffer = pack_ogg(io_buffer, data, rate)
|
||
elif media_type == "aac":
|
||
io_buffer = pack_aac(io_buffer, data, rate)
|
||
elif media_type == "wav":
|
||
io_buffer = pack_wav(io_buffer, data, rate)
|
||
else:
|
||
io_buffer = pack_raw(io_buffer, data, rate)
|
||
io_buffer.seek(0)
|
||
return io_buffer
|
||
|
||
|
||
|
||
# from https://huggingface.co/spaces/coqui/voice-chat-with-mistral/blob/main/app.py
|
||
def wave_header_chunk(frame_input=b"", channels=1, sample_width=2, sample_rate=32000):
|
||
# This will create a wave header then append the frame input
|
||
# It should be first on a streaming wav file
|
||
# Other frames better should not have it (else you will hear some artifacts each chunk start)
|
||
wav_buf = BytesIO()
|
||
with wave.open(wav_buf, "wb") as vfout:
|
||
vfout.setnchannels(channels)
|
||
vfout.setsampwidth(sample_width)
|
||
vfout.setframerate(sample_rate)
|
||
vfout.writeframes(frame_input)
|
||
|
||
wav_buf.seek(0)
|
||
return wav_buf.read()
|
||
|
||
|
||
def handle_control(command:str):
|
||
if command == "restart":
|
||
os.execl(sys.executable, sys.executable, *argv)
|
||
elif command == "exit":
|
||
os.kill(os.getpid(), signal.SIGTERM)
|
||
exit(0)
|
||
|
||
# 不用写成异步的,反正要等,也不能并行
|
||
def tts_handle(req:dict):
|
||
"""
|
||
Text to speech handler.
|
||
|
||
Args:
|
||
req (dict):
|
||
{
|
||
"text": "", # str.(required) text to be synthesized
|
||
"ref_audio_path": "", # str.(required) reference audio path
|
||
"prompt_text": "", # str.(optional) prompt text for the reference audio
|
||
"text_lang: "auto", # str. language of the text to be synthesized
|
||
"prompt_lang": "auto", # str. language of the prompt text for the reference audio
|
||
"top_k": 5, # int. top k sampling
|
||
"top_p": 1, # float. top p sampling
|
||
"temperature": 1, # float. temperature for sampling
|
||
"text_split_method": "cut5", # str. text split method, see text_segmentation_method.py for details.
|
||
"batch_size": 1, # int. batch size for inference
|
||
"batch_threshold": 0.75, # float. threshold for batch splitting.
|
||
"split_bucket: True, # bool. whether to split the batch into multiple buckets.
|
||
"speed_factor":1.0, # float. control the speed of the synthesized audio.
|
||
"fragment_interval":0.3, # float. to control the interval of the audio fragment.
|
||
"seed": -1, # int. random seed for reproducibility.
|
||
"media_type": "wav", # str. media type of the output audio, support "wav", "raw", "ogg", "aac".
|
||
"streaming_mode": False, # bool. whether to return a streaming response.
|
||
}
|
||
returns:
|
||
StreamingResponse: audio stream response.
|
||
"""
|
||
|
||
# 已经检查过了,这里不再检查
|
||
streaming_mode = req.get("streaming_mode", False)
|
||
media_type = req.get("media_type", "wav")
|
||
|
||
if streaming_mode:
|
||
req["return_fragment"] = True
|
||
|
||
try:
|
||
tts_generator=tts_pipeline.run(req)
|
||
|
||
if streaming_mode:
|
||
def streaming_generator(tts_generator:Generator, media_type:str):
|
||
if media_type == "wav":
|
||
yield wave_header_chunk()
|
||
media_type = "raw"
|
||
for sr, chunk in tts_generator:
|
||
yield pack_audio(BytesIO(), chunk, sr, media_type).getvalue()
|
||
# _media_type = f"audio/{media_type}" if not (streaming_mode and media_type in ["wav", "raw"]) else f"audio/x-{media_type}"
|
||
return StreamingResponse(streaming_generator(tts_generator, media_type, ), media_type=f"audio/{media_type}")
|
||
|
||
else:
|
||
# 换用临时文件,支持更多格式,速度能更快,并且会避免占线
|
||
sr, audio_data = next(tts_generator)
|
||
format = media_type
|
||
with tempfile.NamedTemporaryFile(delete=False, suffix=f'.{format}') as tmp_file:
|
||
# 尝试写入用户指定的格式,如果失败则回退到 WAV 格式
|
||
try:
|
||
sf.write(tmp_file, audio_data, sr, format=format)
|
||
except Exception as e:
|
||
# 如果指定的格式无法写入,则回退到 WAV 格式
|
||
sf.write(tmp_file, audio_data, sr, format='wav')
|
||
format = 'wav' # 更新格式为 wav
|
||
|
||
tmp_file_path = tmp_file.name
|
||
# 返回文件响应,FileResponse 会负责将文件发送给客户端
|
||
return FileResponse(tmp_file_path, media_type=f"audio/{format}", filename=f"audio.{format}")
|
||
except Exception as e:
|
||
return JSONResponse(status_code=400, content={"message": f"tts failed", "Exception": str(e)})
|
||
|
||
|
||
|
||
@APP.get("/control")
|
||
async def control(command: str = None):
|
||
if command is None:
|
||
return JSONResponse(status_code=400, content={"message": "command is required"})
|
||
handle_control(command)
|
||
|
||
|
||
# modified from https://github.com/X-T-E-R/GPT-SoVITS-Inference/blob/stable/Inference/src/tts_backend.py
|
||
@APP.get("/tts")
|
||
@APP.post("/tts")
|
||
async def tts_get_endpoint(request: Request):
|
||
|
||
# 尝试从JSON中获取数据,如果不是JSON,则从查询参数中获取
|
||
if request.method == "GET":
|
||
data = request.query_params
|
||
else:
|
||
data = await request.json()
|
||
|
||
req = TTS_Request()
|
||
req.update(data)
|
||
res = req.check()
|
||
if res is not None:
|
||
return res
|
||
|
||
return tts_handle(req.to_dict())
|
||
|
||
|
||
@APP.get("/set_refer_audio")
|
||
async def set_refer_aduio(refer_audio_path: str = None):
|
||
try:
|
||
tts_pipeline.set_ref_audio(refer_audio_path)
|
||
except Exception as e:
|
||
return JSONResponse(status_code=400, content={"message": f"set refer audio failed", "Exception": str(e)})
|
||
return JSONResponse(status_code=200, content={"message": "success"})
|
||
|
||
|
||
# @APP.post("/set_refer_audio")
|
||
# async def set_refer_aduio_post(audio_file: UploadFile = File(...)):
|
||
# try:
|
||
# # 检查文件类型,确保是音频文件
|
||
# if not audio_file.content_type.startswith("audio/"):
|
||
# return JSONResponse(status_code=400, content={"message": "file type is not supported"})
|
||
|
||
# os.makedirs("uploaded_audio", exist_ok=True)
|
||
# save_path = os.path.join("uploaded_audio", audio_file.filename)
|
||
# # 保存音频文件到服务器上的一个目录
|
||
# with open(save_path , "wb") as buffer:
|
||
# buffer.write(await audio_file.read())
|
||
|
||
# tts_pipeline.set_ref_audio(save_path)
|
||
# except Exception as e:
|
||
# return JSONResponse(status_code=400, content={"message": f"set refer audio failed", "Exception": str(e)})
|
||
# return JSONResponse(status_code=200, content={"message": "success"})
|
||
|
||
@APP.get("/set_gpt_weights")
|
||
async def set_gpt_weights(weights_path: str = None):
|
||
try:
|
||
if weights_path in ["", None]:
|
||
return JSONResponse(status_code=400, content={"message": "gpt weight path is required"})
|
||
tts_pipeline.init_t2s_weights(weights_path)
|
||
except Exception as e:
|
||
return JSONResponse(status_code=400, content={"message": f"change gpt weight failed", "Exception": str(e)})
|
||
|
||
return JSONResponse(status_code=200, content={"message": "success"})
|
||
|
||
|
||
@APP.get("/set_sovits_weights")
|
||
async def set_sovits_weights(weights_path: str = None):
|
||
try:
|
||
if weights_path in ["", None]:
|
||
return JSONResponse(status_code=400, content={"message": "sovits weight path is required"})
|
||
tts_pipeline.init_vits_weights(weights_path)
|
||
except Exception as e:
|
||
return JSONResponse(status_code=400, content={"message": f"change sovits weight failed", "Exception": str(e)})
|
||
return JSONResponse(status_code=200, content={"message": "success"})
|
||
|
||
|
||
|
||
if __name__ == "__main__":
|
||
try:
|
||
uvicorn.run(APP, host=host, port=port) # 删去workers=1,uvicorn这么写没法加 workers
|
||
except Exception as e:
|
||
traceback.print_exc()
|
||
os.kill(os.getpid(), signal.SIGTERM)
|
||
exit(0) |