mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 04:22:46 +08:00
* modified: GPT_SoVITS/TTS_infer_pack/TTS.py modified: GPT_SoVITS/TTS_infer_pack/TextPreprocessor.py modified: GPT_SoVITS/inference_webui_fast.py * 适配V3版本 * api_v2.py和inference_webui_fast.py的v3适配 * 修改了个远古bug,增加了更友好的提示信息 * 优化webui * 修改为正确的path * 修复v3 lora模型的载入问题 * 修复读取tts_infer.yaml文件时遇到的编码不匹配的问题
397 lines
15 KiB
Python
397 lines
15 KiB
Python
# Copyright (c) 2024 NVIDIA CORPORATION.
|
|
# Licensed under the MIT license.
|
|
|
|
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
|
# LICENSE is in incl_licenses directory.
|
|
|
|
import math
|
|
import os
|
|
import random
|
|
import torch
|
|
import torch.utils.data
|
|
import numpy as np
|
|
import librosa
|
|
from librosa.filters import mel as librosa_mel_fn
|
|
import pathlib
|
|
from tqdm import tqdm
|
|
from typing import List, Tuple, Optional
|
|
from .env import AttrDict
|
|
|
|
MAX_WAV_VALUE = 32767.0 # NOTE: 32768.0 -1 to prevent int16 overflow (results in popping sound in corner cases)
|
|
|
|
|
|
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
|
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
|
|
|
|
|
def dynamic_range_decompression(x, C=1):
|
|
return np.exp(x) / C
|
|
|
|
|
|
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
|
return torch.log(torch.clamp(x, min=clip_val) * C)
|
|
|
|
|
|
def dynamic_range_decompression_torch(x, C=1):
|
|
return torch.exp(x) / C
|
|
|
|
|
|
def spectral_normalize_torch(magnitudes):
|
|
return dynamic_range_compression_torch(magnitudes)
|
|
|
|
|
|
def spectral_de_normalize_torch(magnitudes):
|
|
return dynamic_range_decompression_torch(magnitudes)
|
|
|
|
|
|
mel_basis_cache = {}
|
|
hann_window_cache = {}
|
|
|
|
|
|
def mel_spectrogram(
|
|
y: torch.Tensor,
|
|
n_fft: int,
|
|
num_mels: int,
|
|
sampling_rate: int,
|
|
hop_size: int,
|
|
win_size: int,
|
|
fmin: int,
|
|
fmax: int = None,
|
|
center: bool = False,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Calculate the mel spectrogram of an input signal.
|
|
This function uses slaney norm for the librosa mel filterbank (using librosa.filters.mel) and uses Hann window for STFT (using torch.stft).
|
|
|
|
Args:
|
|
y (torch.Tensor): Input signal.
|
|
n_fft (int): FFT size.
|
|
num_mels (int): Number of mel bins.
|
|
sampling_rate (int): Sampling rate of the input signal.
|
|
hop_size (int): Hop size for STFT.
|
|
win_size (int): Window size for STFT.
|
|
fmin (int): Minimum frequency for mel filterbank.
|
|
fmax (int): Maximum frequency for mel filterbank. If None, defaults to half the sampling rate (fmax = sr / 2.0) inside librosa_mel_fn
|
|
center (bool): Whether to pad the input to center the frames. Default is False.
|
|
|
|
Returns:
|
|
torch.Tensor: Mel spectrogram.
|
|
"""
|
|
if torch.min(y) < -1.0:
|
|
print(f"[WARNING] Min value of input waveform signal is {torch.min(y)}")
|
|
if torch.max(y) > 1.0:
|
|
print(f"[WARNING] Max value of input waveform signal is {torch.max(y)}")
|
|
|
|
device = y.device
|
|
key = f"{n_fft}_{num_mels}_{sampling_rate}_{hop_size}_{win_size}_{fmin}_{fmax}_{device}"
|
|
|
|
if key not in mel_basis_cache:
|
|
mel = librosa_mel_fn(
|
|
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
|
|
)
|
|
mel_basis_cache[key] = torch.from_numpy(mel).float().to(device)
|
|
hann_window_cache[key] = torch.hann_window(win_size).to(device)
|
|
|
|
mel_basis = mel_basis_cache[key]
|
|
hann_window = hann_window_cache[key]
|
|
|
|
padding = (n_fft - hop_size) // 2
|
|
y = torch.nn.functional.pad(
|
|
y.unsqueeze(1), (padding, padding), mode="reflect"
|
|
).squeeze(1)
|
|
|
|
spec = torch.stft(
|
|
y,
|
|
n_fft,
|
|
hop_length=hop_size,
|
|
win_length=win_size,
|
|
window=hann_window,
|
|
center=center,
|
|
pad_mode="reflect",
|
|
normalized=False,
|
|
onesided=True,
|
|
return_complex=True,
|
|
)
|
|
spec = torch.sqrt(torch.view_as_real(spec).pow(2).sum(-1) + 1e-9)
|
|
|
|
mel_spec = torch.matmul(mel_basis, spec)
|
|
mel_spec = spectral_normalize_torch(mel_spec)
|
|
|
|
return mel_spec
|
|
|
|
|
|
def get_mel_spectrogram(wav, h):
|
|
"""
|
|
Generate mel spectrogram from a waveform using given hyperparameters.
|
|
|
|
Args:
|
|
wav (torch.Tensor): Input waveform.
|
|
h: Hyperparameters object with attributes n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax.
|
|
|
|
Returns:
|
|
torch.Tensor: Mel spectrogram.
|
|
"""
|
|
return mel_spectrogram(
|
|
wav,
|
|
h.n_fft,
|
|
h.num_mels,
|
|
h.sampling_rate,
|
|
h.hop_size,
|
|
h.win_size,
|
|
h.fmin,
|
|
h.fmax,
|
|
)
|
|
|
|
|
|
def get_dataset_filelist(a):
|
|
training_files = []
|
|
validation_files = []
|
|
list_unseen_validation_files = []
|
|
|
|
with open(a.input_training_file, "r", encoding="utf-8") as fi:
|
|
training_files = [
|
|
os.path.join(a.input_wavs_dir, x.split("|")[0] + ".wav")
|
|
for x in fi.read().split("\n")
|
|
if len(x) > 0
|
|
]
|
|
print(f"first training file: {training_files[0]}")
|
|
|
|
with open(a.input_validation_file, "r", encoding="utf-8") as fi:
|
|
validation_files = [
|
|
os.path.join(a.input_wavs_dir, x.split("|")[0] + ".wav")
|
|
for x in fi.read().split("\n")
|
|
if len(x) > 0
|
|
]
|
|
print(f"first validation file: {validation_files[0]}")
|
|
|
|
for i in range(len(a.list_input_unseen_validation_file)):
|
|
with open(a.list_input_unseen_validation_file[i], "r", encoding="utf-8") as fi:
|
|
unseen_validation_files = [
|
|
os.path.join(a.list_input_unseen_wavs_dir[i], x.split("|")[0] + ".wav")
|
|
for x in fi.read().split("\n")
|
|
if len(x) > 0
|
|
]
|
|
print(
|
|
f"first unseen {i}th validation fileset: {unseen_validation_files[0]}"
|
|
)
|
|
list_unseen_validation_files.append(unseen_validation_files)
|
|
|
|
return training_files, validation_files, list_unseen_validation_files
|
|
|
|
|
|
class MelDataset(torch.utils.data.Dataset):
|
|
def __init__(
|
|
self,
|
|
training_files: List[str],
|
|
hparams: AttrDict,
|
|
segment_size: int,
|
|
n_fft: int,
|
|
num_mels: int,
|
|
hop_size: int,
|
|
win_size: int,
|
|
sampling_rate: int,
|
|
fmin: int,
|
|
fmax: Optional[int],
|
|
split: bool = True,
|
|
shuffle: bool = True,
|
|
device: str = None,
|
|
fmax_loss: Optional[int] = None,
|
|
fine_tuning: bool = False,
|
|
base_mels_path: str = None,
|
|
is_seen: bool = True,
|
|
):
|
|
self.audio_files = training_files
|
|
random.seed(1234)
|
|
if shuffle:
|
|
random.shuffle(self.audio_files)
|
|
self.hparams = hparams
|
|
self.is_seen = is_seen
|
|
if self.is_seen:
|
|
self.name = pathlib.Path(self.audio_files[0]).parts[0]
|
|
else:
|
|
self.name = "-".join(pathlib.Path(self.audio_files[0]).parts[:2]).strip("/")
|
|
|
|
self.segment_size = segment_size
|
|
self.sampling_rate = sampling_rate
|
|
self.split = split
|
|
self.n_fft = n_fft
|
|
self.num_mels = num_mels
|
|
self.hop_size = hop_size
|
|
self.win_size = win_size
|
|
self.fmin = fmin
|
|
self.fmax = fmax
|
|
self.fmax_loss = fmax_loss
|
|
self.device = device
|
|
self.fine_tuning = fine_tuning
|
|
self.base_mels_path = base_mels_path
|
|
|
|
print("[INFO] checking dataset integrity...")
|
|
for i in tqdm(range(len(self.audio_files))):
|
|
assert os.path.exists(
|
|
self.audio_files[i]
|
|
), f"{self.audio_files[i]} not found"
|
|
|
|
def __getitem__(
|
|
self, index: int
|
|
) -> Tuple[torch.Tensor, torch.Tensor, str, torch.Tensor]:
|
|
try:
|
|
filename = self.audio_files[index]
|
|
|
|
# Use librosa.load that ensures loading waveform into mono with [-1, 1] float values
|
|
# Audio is ndarray with shape [T_time]. Disable auto-resampling here to minimize overhead
|
|
# The on-the-fly resampling during training will be done only for the obtained random chunk
|
|
audio, source_sampling_rate = librosa.load(filename, sr=None, mono=True)
|
|
|
|
# Main logic that uses <mel, audio> pair for training BigVGAN
|
|
if not self.fine_tuning:
|
|
if self.split: # Training step
|
|
# Obtain randomized audio chunk
|
|
if source_sampling_rate != self.sampling_rate:
|
|
# Adjust segment size to crop if the source sr is different
|
|
target_segment_size = math.ceil(
|
|
self.segment_size
|
|
* (source_sampling_rate / self.sampling_rate)
|
|
)
|
|
else:
|
|
target_segment_size = self.segment_size
|
|
|
|
# Compute upper bound index for the random chunk
|
|
random_chunk_upper_bound = max(
|
|
0, audio.shape[0] - target_segment_size
|
|
)
|
|
|
|
# Crop or pad audio to obtain random chunk with target_segment_size
|
|
if audio.shape[0] >= target_segment_size:
|
|
audio_start = random.randint(0, random_chunk_upper_bound)
|
|
audio = audio[audio_start : audio_start + target_segment_size]
|
|
else:
|
|
audio = np.pad(
|
|
audio,
|
|
(0, target_segment_size - audio.shape[0]),
|
|
mode="constant",
|
|
)
|
|
|
|
# Resample audio chunk to self.sampling rate
|
|
if source_sampling_rate != self.sampling_rate:
|
|
audio = librosa.resample(
|
|
audio,
|
|
orig_sr=source_sampling_rate,
|
|
target_sr=self.sampling_rate,
|
|
)
|
|
if audio.shape[0] > self.segment_size:
|
|
# trim last elements to match self.segment_size (e.g., 16385 for 44khz downsampled to 24khz -> 16384)
|
|
audio = audio[: self.segment_size]
|
|
|
|
else: # Validation step
|
|
# Resample full audio clip to target sampling rate
|
|
if source_sampling_rate != self.sampling_rate:
|
|
audio = librosa.resample(
|
|
audio,
|
|
orig_sr=source_sampling_rate,
|
|
target_sr=self.sampling_rate,
|
|
)
|
|
# Trim last elements to match audio length to self.hop_size * n for evaluation
|
|
if (audio.shape[0] % self.hop_size) != 0:
|
|
audio = audio[: -(audio.shape[0] % self.hop_size)]
|
|
|
|
# BigVGAN is trained using volume-normalized waveform
|
|
audio = librosa.util.normalize(audio) * 0.95
|
|
|
|
# Cast ndarray to torch tensor
|
|
audio = torch.FloatTensor(audio)
|
|
audio = audio.unsqueeze(0) # [B(1), self.segment_size]
|
|
|
|
# Compute mel spectrogram corresponding to audio
|
|
mel = mel_spectrogram(
|
|
audio,
|
|
self.n_fft,
|
|
self.num_mels,
|
|
self.sampling_rate,
|
|
self.hop_size,
|
|
self.win_size,
|
|
self.fmin,
|
|
self.fmax,
|
|
center=False,
|
|
) # [B(1), self.num_mels, self.segment_size // self.hop_size]
|
|
|
|
# Fine-tuning logic that uses pre-computed mel. Example: Using TTS model-generated mel as input
|
|
else:
|
|
# For fine-tuning, assert that the waveform is in the defined sampling_rate
|
|
# Fine-tuning won't support on-the-fly resampling to be fool-proof (the dataset should have been prepared properly)
|
|
assert (
|
|
source_sampling_rate == self.sampling_rate
|
|
), f"For fine_tuning, waveform must be in the spcified sampling rate {self.sampling_rate}, got {source_sampling_rate}"
|
|
|
|
# Cast ndarray to torch tensor
|
|
audio = torch.FloatTensor(audio)
|
|
audio = audio.unsqueeze(0) # [B(1), T_time]
|
|
|
|
# Load pre-computed mel from disk
|
|
mel = np.load(
|
|
os.path.join(
|
|
self.base_mels_path,
|
|
os.path.splitext(os.path.split(filename)[-1])[0] + ".npy",
|
|
)
|
|
)
|
|
mel = torch.from_numpy(mel)
|
|
|
|
if len(mel.shape) < 3:
|
|
mel = mel.unsqueeze(0) # ensure [B, C, T]
|
|
|
|
if self.split:
|
|
frames_per_seg = math.ceil(self.segment_size / self.hop_size)
|
|
|
|
if audio.size(1) >= self.segment_size:
|
|
mel_start = random.randint(0, mel.size(2) - frames_per_seg - 1)
|
|
mel = mel[:, :, mel_start : mel_start + frames_per_seg]
|
|
audio = audio[
|
|
:,
|
|
mel_start
|
|
* self.hop_size : (mel_start + frames_per_seg)
|
|
* self.hop_size,
|
|
]
|
|
|
|
# Pad pre-computed mel and audio to match length to ensuring fine-tuning without error.
|
|
# NOTE: this may introduce a single-frame misalignment of the <pre-computed mel, audio>
|
|
# To remove possible misalignment, it is recommended to prepare the <pre-computed mel, audio> pair where the audio length is the integer multiple of self.hop_size
|
|
mel = torch.nn.functional.pad(
|
|
mel, (0, frames_per_seg - mel.size(2)), "constant"
|
|
)
|
|
audio = torch.nn.functional.pad(
|
|
audio, (0, self.segment_size - audio.size(1)), "constant"
|
|
)
|
|
|
|
# Compute mel_loss used by spectral regression objective. Uses self.fmax_loss instead (usually None)
|
|
mel_loss = mel_spectrogram(
|
|
audio,
|
|
self.n_fft,
|
|
self.num_mels,
|
|
self.sampling_rate,
|
|
self.hop_size,
|
|
self.win_size,
|
|
self.fmin,
|
|
self.fmax_loss,
|
|
center=False,
|
|
) # [B(1), self.num_mels, self.segment_size // self.hop_size]
|
|
|
|
# Shape sanity checks
|
|
assert (
|
|
audio.shape[1] == mel.shape[2] * self.hop_size
|
|
and audio.shape[1] == mel_loss.shape[2] * self.hop_size
|
|
), f"Audio length must be mel frame length * hop_size. Got audio shape {audio.shape} mel shape {mel.shape} mel_loss shape {mel_loss.shape}"
|
|
|
|
return (mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze())
|
|
|
|
# If it encounters error during loading the data, skip this sample and load random other sample to the batch
|
|
except Exception as e:
|
|
if self.fine_tuning:
|
|
raise e # Terminate training if it is fine-tuning. The dataset should have been prepared properly.
|
|
else:
|
|
print(
|
|
f"[WARNING] Failed to load waveform, skipping! filename: {filename} Error: {e}"
|
|
)
|
|
return self[random.randrange(len(self))]
|
|
|
|
def __len__(self):
|
|
return len(self.audio_files)
|