mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 19:41:56 +08:00
265 lines
11 KiB
Python
265 lines
11 KiB
Python
import os
|
|
import sys
|
|
import traceback
|
|
from typing import Generator
|
|
now_dir = os.getcwd()
|
|
sys.path.append(now_dir)
|
|
sys.path.append("%s/GPT_SoVITS" % (now_dir))
|
|
import argparse
|
|
import subprocess
|
|
import wave
|
|
import signal
|
|
import numpy as np
|
|
import soundfile as sf
|
|
from io import BytesIO
|
|
from tools.i18n.i18n import I18nAuto
|
|
from GPT_SoVITS.TTS_infer_pack.TTS import TTS, TTS_Config
|
|
from GPT_SoVITS.TTS_infer_pack.text_segmentation_method import get_method_names as get_cut_method_names
|
|
from pydantic import BaseModel
|
|
|
|
i18n = I18nAuto()
|
|
cut_method_names = get_cut_method_names()
|
|
|
|
parser = argparse.ArgumentParser(description="GPT-SoVITS api")
|
|
parser.add_argument("-c", "--tts_config", type=str, default="GPT_SoVITS/configs/tts_infer.yaml", help="tts_infer路径")
|
|
parser.add_argument("-a", "--bind_addr", type=str, default="127.0.0.1", help="default: 127.0.0.1")
|
|
parser.add_argument("-p", "--port", type=int, default="9880", help="default: 9880")
|
|
args = parser.parse_args()
|
|
config_path = args.tts_config
|
|
# device = args.device
|
|
port = args.port
|
|
host = args.bind_addr
|
|
argv = sys.argv
|
|
|
|
if config_path in [None, ""]:
|
|
config_path = "GPT-SoVITS/configs/tts_infer.yaml"
|
|
|
|
tts_config = TTS_Config(config_path)
|
|
print(tts_config)
|
|
tts_pipeline = TTS(tts_config)
|
|
|
|
# speaker configuration
|
|
speakers = {
|
|
"firefly":{
|
|
"gpt_model" : "/root/autodl-tmp/GPT-SoVITS/models/GPT_models/firefly_312-e15.ckpt",
|
|
"sovits_model" : "/root/autodl-tmp/GPT-SoVITS/models/VITS_models/firefly_312_e8_s504.pth",
|
|
"ref_audio" : "/root/autodl-tmp/GPT-SoVITS/firefly/chapter3_2_firefly_103.wav",
|
|
"ref_text" : "谢谢,如果没有您出手相助,我真的不知道该怎么办",
|
|
"ref_language" : "zh",
|
|
"target_language" : "zh"
|
|
},
|
|
"keele":{
|
|
"gpt_model" : "/root/autodl-tmp/GPT-SoVITS/models/GPT_models/Keele-e15.ckpt",
|
|
"sovits_model" : "/root/autodl-tmp/GPT-SoVITS/models/VITS_models/Keele_e8_s656.pth",
|
|
"ref_audio" : "/root/autodl-tmp/GPT-SoVITS/keele/vo_dialog_KLLQ003_klee_03.wav",
|
|
"ref_text" : "我听说,冒险家协会也有一套冒险的守则,是不是,应该去拜托他们",
|
|
"ref_language" : "zh",
|
|
"target_language" : "zh"
|
|
},
|
|
}
|
|
|
|
# process the output audio type
|
|
def pack_ogg(io_buffer:BytesIO, data:np.ndarray, rate:int):
|
|
with sf.SoundFile(io_buffer, mode='w', samplerate=rate, channels=1, format='ogg') as audio_file:
|
|
audio_file.write(data)
|
|
return io_buffer
|
|
|
|
def pack_raw(io_buffer:BytesIO, data:np.ndarray, rate:int):
|
|
io_buffer.write(data.tobytes())
|
|
return io_buffer
|
|
|
|
def pack_wav(io_buffer:BytesIO, data:np.ndarray, rate:int):
|
|
io_buffer = BytesIO()
|
|
sf.write(io_buffer, data, rate, format='wav')
|
|
return io_buffer
|
|
|
|
def pack_aac(io_buffer:BytesIO, data:np.ndarray, rate:int):
|
|
process = subprocess.Popen([
|
|
'ffmpeg',
|
|
'-f', 's16le', # 输入16位有符号小端整数PCM
|
|
'-ar', str(rate), # 设置采样率
|
|
'-ac', '1', # 单声道
|
|
'-i', 'pipe:0', # 从管道读取输入
|
|
'-c:a', 'aac', # 音频编码器为AAC
|
|
'-b:a', '192k', # 比特率
|
|
'-vn', # 不包含视频
|
|
'-f', 'adts', # 输出AAC数据流格式
|
|
'pipe:1' # 将输出写入管道
|
|
], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
|
out, _ = process.communicate(input=data.tobytes())
|
|
io_buffer.write(out)
|
|
return io_buffer
|
|
|
|
def pack_audio(io_buffer:BytesIO, data:np.ndarray, rate:int, media_type:str):
|
|
if media_type == "ogg":
|
|
io_buffer = pack_ogg(io_buffer, data, rate)
|
|
elif media_type == "aac":
|
|
io_buffer = pack_aac(io_buffer, data, rate)
|
|
elif media_type == "wav":
|
|
io_buffer = pack_wav(io_buffer, data, rate)
|
|
else:
|
|
io_buffer = pack_raw(io_buffer, data, rate)
|
|
io_buffer.seek(0)
|
|
return io_buffer
|
|
|
|
# create the audio from text on specific speaker
|
|
def check_params(req:dict):
|
|
text:str = req.get("text", "")
|
|
text_lang:str = req.get("text_lang", "")
|
|
ref_audio_path:str = req.get("ref_audio_path", "")
|
|
streaming_mode:bool = req.get("streaming_mode", False)
|
|
media_type:str = req.get("media_type", "wav")
|
|
prompt_lang:str = req.get("prompt_lang", "")
|
|
text_split_method:str = req.get("text_split_method", "cut5")
|
|
|
|
if ref_audio_path in [None, ""]:
|
|
print("ref_audio_path is required")
|
|
return False
|
|
if text in [None, ""]:
|
|
print("text is required")
|
|
return False
|
|
|
|
if (text_lang in [None, ""]) :
|
|
print("text_lang is required")
|
|
return False
|
|
elif text_lang.lower() not in tts_config.languages:
|
|
print(f"text_lang: {text_lang} is not supported in version {tts_config.version}")
|
|
return False
|
|
|
|
if (prompt_lang in [None, ""]) :
|
|
print("prompt_lang is required")
|
|
return False
|
|
elif prompt_lang.lower() not in tts_config.languages:
|
|
print(f"prompt_lang: {prompt_lang} is not supported in version {tts_config.version}")
|
|
return False
|
|
|
|
if media_type not in ["wav", "raw", "ogg", "aac"]:
|
|
print(f"media_type: {media_type} is not supported")
|
|
return False
|
|
elif media_type == "ogg" and not streaming_mode:
|
|
print("ogg format is not supported in non-streaming mode")
|
|
return False
|
|
|
|
if text_split_method not in cut_method_names:
|
|
print(f"text_split_method:{text_split_method} is not supported")
|
|
return False
|
|
|
|
return True
|
|
|
|
def wave_header_chunk(frame_input=b"", channels=1, sample_width=2, sample_rate=32000):
|
|
# This will create a wave header then append the frame input
|
|
# It should be first on a streaming wav file
|
|
# Other frames better should not have it (else you will hear some artifacts each chunk start)
|
|
wav_buf = BytesIO()
|
|
with wave.open(wav_buf, "wb") as vfout:
|
|
vfout.setnchannels(channels)
|
|
vfout.setsampwidth(sample_width)
|
|
vfout.setframerate(sample_rate)
|
|
vfout.writeframes(frame_input)
|
|
|
|
wav_buf.seek(0)
|
|
return wav_buf.read()
|
|
|
|
def tts_handle(req:dict):
|
|
"""
|
|
Text to speech handler.
|
|
|
|
Args:
|
|
req (dict):
|
|
{
|
|
"text": "", # str.(required) text to be synthesized
|
|
"text_lang: "", # str.(required) language of the text to be synthesized
|
|
"ref_audio_path": "", # str.(required) reference audio path
|
|
"aux_ref_audio_paths": [], # list.(optional) auxiliary reference audio paths for multi-speaker synthesis
|
|
"prompt_text": "", # str.(optional) prompt text for the reference audio
|
|
"prompt_lang": "", # str.(required) language of the prompt text for the reference audio
|
|
"top_k": 5, # int. top k sampling
|
|
"top_p": 1, # float. top p sampling
|
|
"temperature": 1, # float. temperature for sampling
|
|
"text_split_method": "cut5", # str. text split method, see text_segmentation_method.py for details.
|
|
"batch_size": 1, # int. batch size for inference
|
|
"batch_threshold": 0.75, # float. threshold for batch splitting.
|
|
"split_bucket: True, # bool. whether to split the batch into multiple buckets.
|
|
"speed_factor":1.0, # float. control the speed of the synthesized audio.
|
|
"fragment_interval":0.3, # float. to control the interval of the audio fragment.
|
|
"seed": -1, # int. random seed for reproducibility.
|
|
"media_type": "wav", # str. media type of the output audio, support "wav", "raw", "ogg", "aac".
|
|
"streaming_mode": False, # bool. whether to return a streaming response.
|
|
"parallel_infer": True, # bool.(optional) whether to use parallel inference.
|
|
"repetition_penalty": 1.35 # float.(optional) repetition penalty for T2S model.
|
|
}
|
|
returns:
|
|
StreamingResponse: audio stream response.
|
|
"""
|
|
|
|
streaming_mode = req.get("streaming_mode", False)
|
|
return_fragment = req.get("return_fragment", False)
|
|
media_type = req.get("media_type", "wav")
|
|
|
|
check_res = check_params(req)
|
|
if not check_res:
|
|
return None
|
|
|
|
if streaming_mode or return_fragment:
|
|
req["return_fragment"] = True
|
|
|
|
try:
|
|
tts_generator=tts_pipeline.run(req)
|
|
|
|
if streaming_mode:
|
|
def streaming_generator(tts_generator:Generator, media_type:str):
|
|
if media_type == "wav":
|
|
yield wave_header_chunk()
|
|
media_type = "raw"
|
|
for sr, chunk in tts_generator:
|
|
yield pack_audio(BytesIO(), chunk, sr, media_type).getvalue()
|
|
# _media_type = f"audio/{media_type}" if not (streaming_mode and media_type in ["wav", "raw"]) else f"audio/x-{media_type}"
|
|
return streaming_generator(tts_generator, media_type, )
|
|
|
|
else:
|
|
sr, audio_data = next(tts_generator)
|
|
audio_data = pack_audio(BytesIO(), audio_data, sr, media_type).getvalue()
|
|
return audio_data
|
|
except Exception as e:
|
|
print("tts failed, Exception", str(e))
|
|
return None
|
|
|
|
def tts_get_endpoint(text, speaker_id="firefly"):
|
|
speaker = speakers[speaker_id]
|
|
tts_pipeline.init_vits_weights(speaker["sovits_model"])
|
|
tts_pipeline.init_t2s_weights(speaker["gpt_model"])
|
|
req = {
|
|
"text" : text,
|
|
"text_lang" : speaker["target_language"],
|
|
"ref_audio_path" : speaker["ref_audio"],
|
|
"aux_ref_audio_paths" : None,
|
|
"prompt_text" : speaker["ref_text"],
|
|
"prompt_lang" : speaker["ref_language"],
|
|
"top_k" : int(15),
|
|
"top_p" : float(1.0),
|
|
"temperature" : float(1),
|
|
"text_split_method" : "cut0",
|
|
"batch_size" : int(1),
|
|
"batch_threshold" : float(0.75),
|
|
"speed_factor" : float(0.75),
|
|
"split_bucket" : True,
|
|
"fragment_interval" : float(0.3),
|
|
"seed" : int(-1),
|
|
"media_type" : "wav",
|
|
"streaming_mode" : False,
|
|
"parallel_infer" : True,
|
|
"repetition_penalty" : float(1.35)
|
|
}
|
|
return tts_handle(req)
|
|
|
|
def save_wav(filename, audio_data, sample_rate):
|
|
with wave.open(filename, 'wb') as wav_file:
|
|
wav_file.setnchannels(1)
|
|
wav_file.setsampwidth(2)
|
|
wav_file.setframerate(sample_rate)
|
|
wav_file.writeframes(audio_data)
|
|
|
|
if __name__ == "__main__":
|
|
audio = tts_get_endpoint("我是「罗浮」云骑将军景元。不必拘谨,「将军」只是一时的身份,你称呼我景元便可")
|
|
save_wav("./output.wav", audio, 32000)
|
|
|