XXXXRT666 6fdc67ca83
Fix bugs in install.sh, reduce log noise, and improve error reporting (#2464)
* Update Install.sh

* Format Code

* Delete dev null

* Update README, Support Dark Mode in CSS/JS
2025-06-17 15:21:36 +08:00

33 lines
1.2 KiB
Python

import sys
import os
import torch
sys.path.append(f"{os.getcwd()}/GPT_SoVITS/eres2net")
sv_path = "GPT_SoVITS/pretrained_models/sv/pretrained_eres2netv2w24s4ep4.ckpt"
from ERes2NetV2 import ERes2NetV2
import kaldi as Kaldi
class SV:
def __init__(self, device, is_half):
pretrained_state = torch.load(sv_path, map_location="cpu", weights_only=False)
embedding_model = ERes2NetV2(baseWidth=24, scale=4, expansion=4)
embedding_model.load_state_dict(pretrained_state)
embedding_model.eval()
self.embedding_model = embedding_model
if is_half == False:
self.embedding_model = self.embedding_model.to(device)
else:
self.embedding_model = self.embedding_model.half().to(device)
self.is_half = is_half
def compute_embedding3(self, wav):
with torch.no_grad():
if self.is_half == True:
wav = wav.half()
feat = torch.stack(
[Kaldi.fbank(wav0.unsqueeze(0), num_mel_bins=80, sample_frequency=16000, dither=0) for wav0 in wav]
)
sv_emb = self.embedding_model.forward3(feat)
return sv_emb