mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-06-24 05:09:18 +08:00
* Update Install.sh * Format Code * Delete dev null * Update README, Support Dark Mode in CSS/JS
116 lines
3.6 KiB
Python
116 lines
3.6 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
import sys
|
|
import os
|
|
|
|
inp_text = os.environ.get("inp_text")
|
|
inp_wav_dir = os.environ.get("inp_wav_dir")
|
|
exp_name = os.environ.get("exp_name")
|
|
i_part = os.environ.get("i_part")
|
|
all_parts = os.environ.get("all_parts")
|
|
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
|
|
|
opt_dir = os.environ.get("opt_dir")
|
|
sv_path = os.environ.get("sv_path")
|
|
import torch
|
|
|
|
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
|
|
|
|
import traceback
|
|
import torchaudio
|
|
|
|
now_dir = os.getcwd()
|
|
sys.path.append(now_dir)
|
|
sys.path.append(f"{now_dir}/GPT_SoVITS/eres2net")
|
|
from tools.my_utils import clean_path
|
|
from time import time as ttime
|
|
import shutil
|
|
from ERes2NetV2 import ERes2NetV2
|
|
import kaldi as Kaldi
|
|
|
|
|
|
def my_save(fea, path): #####fix issue: torch.save doesn't support chinese path
|
|
dir = os.path.dirname(path)
|
|
name = os.path.basename(path)
|
|
# tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part)
|
|
tmp_path = "%s%s.pth" % (ttime(), i_part)
|
|
torch.save(fea, tmp_path)
|
|
shutil.move(tmp_path, "%s/%s" % (dir, name))
|
|
|
|
|
|
sv_cn_dir = "%s/7-sv_cn" % (opt_dir)
|
|
wav32dir = "%s/5-wav32k" % (opt_dir)
|
|
os.makedirs(opt_dir, exist_ok=True)
|
|
os.makedirs(sv_cn_dir, exist_ok=True)
|
|
os.makedirs(wav32dir, exist_ok=True)
|
|
|
|
maxx = 0.95
|
|
alpha = 0.5
|
|
if torch.cuda.is_available():
|
|
device = "cuda:0"
|
|
# elif torch.backends.mps.is_available():
|
|
# device = "mps"
|
|
else:
|
|
device = "cpu"
|
|
|
|
|
|
class SV:
|
|
def __init__(self, device, is_half):
|
|
pretrained_state = torch.load(sv_path, map_location="cpu")
|
|
embedding_model = ERes2NetV2(baseWidth=24, scale=4, expansion=4)
|
|
embedding_model.load_state_dict(pretrained_state)
|
|
embedding_model.eval()
|
|
self.embedding_model = embedding_model
|
|
self.res = torchaudio.transforms.Resample(32000, 16000).to(device)
|
|
if is_half == False:
|
|
self.embedding_model = self.embedding_model.to(device)
|
|
else:
|
|
self.embedding_model = self.embedding_model.half().to(device)
|
|
self.is_half = is_half
|
|
|
|
def compute_embedding3(self, wav): # (1,x)#-1~1
|
|
with torch.no_grad():
|
|
wav = self.res(wav)
|
|
if self.is_half == True:
|
|
wav = wav.half()
|
|
feat = torch.stack(
|
|
[Kaldi.fbank(wav0.unsqueeze(0), num_mel_bins=80, sample_frequency=16000, dither=0) for wav0 in wav]
|
|
)
|
|
sv_emb = self.embedding_model.forward3(feat)
|
|
return sv_emb
|
|
|
|
|
|
sv = SV(device, is_half)
|
|
|
|
|
|
def name2go(wav_name, wav_path):
|
|
sv_cn_path = "%s/%s.pt" % (sv_cn_dir, wav_name)
|
|
if os.path.exists(sv_cn_path):
|
|
return
|
|
wav_path = "%s/%s" % (wav32dir, wav_name)
|
|
wav32k, sr0 = torchaudio.load(wav_path)
|
|
assert sr0 == 32000
|
|
wav32k = wav32k.to(device)
|
|
emb = sv.compute_embedding3(wav32k).cpu() # torch.Size([1, 20480])
|
|
my_save(emb, sv_cn_path)
|
|
|
|
|
|
with open(inp_text, "r", encoding="utf8") as f:
|
|
lines = f.read().strip("\n").split("\n")
|
|
|
|
for line in lines[int(i_part) :: int(all_parts)]:
|
|
try:
|
|
wav_name, spk_name, language, text = line.split("|")
|
|
wav_name = clean_path(wav_name)
|
|
if inp_wav_dir != "" and inp_wav_dir != None:
|
|
wav_name = os.path.basename(wav_name)
|
|
wav_path = "%s/%s" % (inp_wav_dir, wav_name)
|
|
|
|
else:
|
|
wav_path = wav_name
|
|
wav_name = os.path.basename(wav_name)
|
|
name2go(wav_name, wav_path)
|
|
except:
|
|
print(line, traceback.format_exc())
|