mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-06 03:57:44 +08:00
* Update README * Optimize-English-G2P * docs: change akward expression * docs: update Changelog_KO.md * Fix CN punc in EN,add 's match * Adjust normalize and g2p logic * Update zh_CN.json * Update README (#827) Update README.md Update some outdated file paths and commands * 修复英文多音字,调整字典热加载,新增姓名匹配 (#869) * Fix homograph dict * Add JSON in dict * Adjust hot dict to hot reload * Add English name dict * Adjust get name dict logic * Make API Great Again (#894) * Add zh/jp/en mix * Optimize code readability and formatted output. * Try OGG streaming * Add stream mode arg * Add media type arg * Add cut punc arg * Eliminate punc risk * Update README (#895) * Update README * Update README * update README * update README * fix typo s/Licence /License (#904) * fix reformat cmd (#917) Co-authored-by: starylan <starylan@outlook.com> * Update README.md * Normalize chinese arithmetic operations (#947) * 改变训练和推理时的mask策略,以修复当batch_size>1时,产生的复读现象 * 同步main分支代码,增加“保持随机”选项 * 在colab中运行colab_webui.ipynb发生的uvr5模型缺失问题 (#968) 在colab中使用git下载uvr5模型时报错: fatal: destination path 'uvr5_weights' already exists and is not an empty directory. 通过在下载前将原本从本仓库下载的uvr5_weights文件夹删除可以解决问题。 * [ASR] 修复FasterWhisper遍历输入路径失败 (#956) * remove glob * rename * reset mirror pos * 回退mask策略; 回退pad策略; 在T2SBlock中添加padding_mask,以减少pad的影响; 开放repetition_penalty参数,让用户自行调整重复惩罚的强度; 增加parallel_infer参数,用于开启或关闭并行推理,关闭时与0307版本保持一致; 在webui中增加“保持随机”选项; 同步main分支代码。 * 删除无用注释 --------- Co-authored-by: Lion <drain.daters.0p@icloud.com> Co-authored-by: RVC-Boss <129054828+RVC-Boss@users.noreply.github.com> Co-authored-by: KamioRinn <snowsdream@live.com> Co-authored-by: Pengoose <pengoose_dev@naver.com> Co-authored-by: Yuan-Man <68322456+Yuan-ManX@users.noreply.github.com> Co-authored-by: XXXXRT666 <157766680+XXXXRT666@users.noreply.github.com> Co-authored-by: KamioRinn <63162909+KamioRinn@users.noreply.github.com> Co-authored-by: Lion-Wu <130235128+Lion-Wu@users.noreply.github.com> Co-authored-by: digger yu <digger-yu@outlook.com> Co-authored-by: SapphireLab <36986837+SapphireLab@users.noreply.github.com> Co-authored-by: starylan <starylan@outlook.com> Co-authored-by: shadow01a <141255649+shadow01a@users.noreply.github.com>
272 lines
12 KiB
Python
272 lines
12 KiB
Python
'''
|
||
按中英混合识别
|
||
按日英混合识别
|
||
多语种启动切分识别语种
|
||
全部按中文识别
|
||
全部按英文识别
|
||
全部按日文识别
|
||
'''
|
||
import random
|
||
import os, sys
|
||
now_dir = os.getcwd()
|
||
sys.path.append(now_dir)
|
||
|
||
import os, re, logging
|
||
logging.getLogger("markdown_it").setLevel(logging.ERROR)
|
||
logging.getLogger("urllib3").setLevel(logging.ERROR)
|
||
logging.getLogger("httpcore").setLevel(logging.ERROR)
|
||
logging.getLogger("httpx").setLevel(logging.ERROR)
|
||
logging.getLogger("asyncio").setLevel(logging.ERROR)
|
||
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
|
||
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
|
||
import pdb
|
||
import torch
|
||
|
||
|
||
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
|
||
infer_ttswebui = int(infer_ttswebui)
|
||
is_share = os.environ.get("is_share", "False")
|
||
is_share = eval(is_share)
|
||
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
||
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
|
||
gpt_path = os.environ.get("gpt_path", None)
|
||
sovits_path = os.environ.get("sovits_path", None)
|
||
cnhubert_base_path = os.environ.get("cnhubert_base_path", None)
|
||
bert_path = os.environ.get("bert_path", None)
|
||
|
||
import gradio as gr
|
||
from TTS_infer_pack.TTS import TTS, TTS_Config
|
||
from TTS_infer_pack.text_segmentation_method import get_method
|
||
from tools.i18n.i18n import I18nAuto
|
||
|
||
i18n = I18nAuto()
|
||
|
||
# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
|
||
|
||
if torch.cuda.is_available():
|
||
device = "cuda"
|
||
# elif torch.backends.mps.is_available():
|
||
# device = "mps"
|
||
else:
|
||
device = "cpu"
|
||
|
||
dict_language = {
|
||
i18n("中文"): "all_zh",#全部按中文识别
|
||
i18n("英文"): "en",#全部按英文识别#######不变
|
||
i18n("日文"): "all_ja",#全部按日文识别
|
||
i18n("中英混合"): "zh",#按中英混合识别####不变
|
||
i18n("日英混合"): "ja",#按日英混合识别####不变
|
||
i18n("多语种混合"): "auto",#多语种启动切分识别语种
|
||
}
|
||
|
||
cut_method = {
|
||
i18n("不切"):"cut0",
|
||
i18n("凑四句一切"): "cut1",
|
||
i18n("凑50字一切"): "cut2",
|
||
i18n("按中文句号。切"): "cut3",
|
||
i18n("按英文句号.切"): "cut4",
|
||
i18n("按标点符号切"): "cut5",
|
||
}
|
||
|
||
tts_config = TTS_Config("GPT_SoVITS/configs/tts_infer.yaml")
|
||
tts_config.device = device
|
||
tts_config.is_half = is_half
|
||
if gpt_path is not None:
|
||
tts_config.t2s_weights_path = gpt_path
|
||
if sovits_path is not None:
|
||
tts_config.vits_weights_path = sovits_path
|
||
if cnhubert_base_path is not None:
|
||
tts_config.cnhuhbert_base_path = cnhubert_base_path
|
||
if bert_path is not None:
|
||
tts_config.bert_base_path = bert_path
|
||
|
||
print(tts_config)
|
||
tts_pipeline = TTS(tts_config)
|
||
gpt_path = tts_config.t2s_weights_path
|
||
sovits_path = tts_config.vits_weights_path
|
||
|
||
def inference(text, text_lang,
|
||
ref_audio_path, prompt_text,
|
||
prompt_lang, top_k,
|
||
top_p, temperature,
|
||
text_split_method, batch_size,
|
||
speed_factor, ref_text_free,
|
||
split_bucket,fragment_interval,
|
||
seed, keep_random, parallel_infer,
|
||
repetition_penalty
|
||
):
|
||
|
||
seed = -1 if keep_random else seed
|
||
actual_seed = seed if seed not in [-1, "", None] else random.randrange(1 << 32)
|
||
inputs={
|
||
"text": text,
|
||
"text_lang": dict_language[text_lang],
|
||
"ref_audio_path": ref_audio_path,
|
||
"prompt_text": prompt_text if not ref_text_free else "",
|
||
"prompt_lang": dict_language[prompt_lang],
|
||
"top_k": top_k,
|
||
"top_p": top_p,
|
||
"temperature": temperature,
|
||
"text_split_method": cut_method[text_split_method],
|
||
"batch_size":int(batch_size),
|
||
"speed_factor":float(speed_factor),
|
||
"split_bucket":split_bucket,
|
||
"return_fragment":False,
|
||
"fragment_interval":fragment_interval,
|
||
"seed":actual_seed,
|
||
"parallel_infer": parallel_infer,
|
||
"repetition_penalty": repetition_penalty,
|
||
}
|
||
for item in tts_pipeline.run(inputs):
|
||
yield item, actual_seed
|
||
|
||
def custom_sort_key(s):
|
||
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
||
parts = re.split('(\d+)', s)
|
||
# 将数字部分转换为整数,非数字部分保持不变
|
||
parts = [int(part) if part.isdigit() else part for part in parts]
|
||
return parts
|
||
|
||
|
||
def change_choices():
|
||
SoVITS_names, GPT_names = get_weights_names()
|
||
return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"}
|
||
|
||
|
||
pretrained_sovits_name = "GPT_SoVITS/pretrained_models/s2G488k.pth"
|
||
pretrained_gpt_name = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
||
SoVITS_weight_root = "SoVITS_weights"
|
||
GPT_weight_root = "GPT_weights"
|
||
os.makedirs(SoVITS_weight_root, exist_ok=True)
|
||
os.makedirs(GPT_weight_root, exist_ok=True)
|
||
|
||
|
||
def get_weights_names():
|
||
SoVITS_names = [pretrained_sovits_name]
|
||
for name in os.listdir(SoVITS_weight_root):
|
||
if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (SoVITS_weight_root, name))
|
||
GPT_names = [pretrained_gpt_name]
|
||
for name in os.listdir(GPT_weight_root):
|
||
if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (GPT_weight_root, name))
|
||
return SoVITS_names, GPT_names
|
||
|
||
|
||
SoVITS_names, GPT_names = get_weights_names()
|
||
|
||
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||
gr.Markdown(
|
||
value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.")
|
||
)
|
||
|
||
with gr.Column():
|
||
# with gr.Group():
|
||
gr.Markdown(value=i18n("模型切换"))
|
||
with gr.Row():
|
||
GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=gpt_path, interactive=True)
|
||
SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True)
|
||
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary")
|
||
refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
|
||
SoVITS_dropdown.change(tts_pipeline.init_vits_weights, [SoVITS_dropdown], [])
|
||
GPT_dropdown.change(tts_pipeline.init_t2s_weights, [GPT_dropdown], [])
|
||
|
||
with gr.Row():
|
||
with gr.Column():
|
||
gr.Markdown(value=i18n("*请上传并填写参考信息"))
|
||
inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath")
|
||
prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="", lines=2)
|
||
with gr.Row():
|
||
prompt_language = gr.Dropdown(
|
||
label=i18n("参考音频的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文")
|
||
)
|
||
with gr.Column():
|
||
ref_text_free = gr.Checkbox(label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。"), value=False, interactive=True, show_label=True)
|
||
gr.Markdown(i18n("使用无参考文本模式时建议使用微调的GPT,听不清参考音频说的啥(不晓得写啥)可以开,开启后无视填写的参考文本。"))
|
||
|
||
with gr.Column():
|
||
gr.Markdown(value=i18n("*请填写需要合成的目标文本和语种模式"))
|
||
text = gr.Textbox(label=i18n("需要合成的文本"), value="", lines=16, max_lines=16)
|
||
text_language = gr.Dropdown(
|
||
label=i18n("需要合成的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文")
|
||
)
|
||
|
||
|
||
with gr.Group():
|
||
gr.Markdown(value=i18n("推理设置"))
|
||
with gr.Row():
|
||
|
||
with gr.Column():
|
||
batch_size = gr.Slider(minimum=1,maximum=200,step=1,label=i18n("batch_size"),value=20,interactive=True)
|
||
fragment_interval = gr.Slider(minimum=0.01,maximum=1,step=0.01,label=i18n("分段间隔(秒)"),value=0.3,interactive=True)
|
||
speed_factor = gr.Slider(minimum=0.25,maximum=4,step=0.05,label="speed_factor",value=1.0,interactive=True)
|
||
top_k = gr.Slider(minimum=1,maximum=100,step=1,label=i18n("top_k"),value=5,interactive=True)
|
||
top_p = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("top_p"),value=1,interactive=True)
|
||
temperature = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("temperature"),value=1,interactive=True)
|
||
repetition_penalty = gr.Slider(minimum=0,maximum=2,step=0.05,label=i18n("重复惩罚"),value=1.35,interactive=True)
|
||
with gr.Column():
|
||
how_to_cut = gr.Radio(
|
||
label=i18n("怎么切"),
|
||
choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ],
|
||
value=i18n("凑四句一切"),
|
||
interactive=True,
|
||
)
|
||
with gr.Row():
|
||
parallel_infer = gr.Checkbox(label=i18n("并行推理(速度更快,但可能增大复读概率)"), value=True, interactive=True, show_label=True)
|
||
split_bucket = gr.Checkbox(label=i18n("数据分桶(并行推理时会降低一点计算量)"), value=True, interactive=True, show_label=True)
|
||
seed = gr.Number(label=i18n("随机种子"),value=-1)
|
||
keep_random = gr.Checkbox(label=i18n("保持随机"), value=True, interactive=True, show_label=True)
|
||
|
||
# with gr.Column():
|
||
output = gr.Audio(label=i18n("输出的语音"))
|
||
with gr.Row():
|
||
inference_button = gr.Button(i18n("合成语音"), variant="primary")
|
||
stop_infer = gr.Button(i18n("终止合成"), variant="primary")
|
||
|
||
|
||
inference_button.click(
|
||
inference,
|
||
[
|
||
text,text_language, inp_ref,
|
||
prompt_text, prompt_language,
|
||
top_k, top_p, temperature,
|
||
how_to_cut, batch_size,
|
||
speed_factor, ref_text_free,
|
||
split_bucket,fragment_interval,
|
||
seed, keep_random, parallel_infer,
|
||
repetition_penalty
|
||
],
|
||
[output, seed],
|
||
)
|
||
stop_infer.click(tts_pipeline.stop, [], [])
|
||
|
||
with gr.Group():
|
||
gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"))
|
||
with gr.Row():
|
||
text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="", lines=4)
|
||
with gr.Column():
|
||
_how_to_cut = gr.Radio(
|
||
label=i18n("怎么切"),
|
||
choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ],
|
||
value=i18n("凑四句一切"),
|
||
interactive=True,
|
||
)
|
||
cut_text= gr.Button(i18n("切分"), variant="primary")
|
||
|
||
def to_cut(text_inp, how_to_cut):
|
||
if len(text_inp.strip()) == 0 or text_inp==[]:
|
||
return ""
|
||
method = get_method(cut_method[how_to_cut])
|
||
return method(text_inp)
|
||
|
||
text_opt = gr.Textbox(label=i18n("切分后文本"), value="", lines=4)
|
||
cut_text.click(to_cut, [text_inp, _how_to_cut], [text_opt])
|
||
gr.Markdown(value=i18n("后续将支持转音素、手工修改音素、语音合成分步执行。"))
|
||
|
||
app.queue(concurrency_count=511, max_size=1022).launch(
|
||
server_name="0.0.0.0",
|
||
inbrowser=True,
|
||
share=is_share,
|
||
server_port=infer_ttswebui,
|
||
quiet=True,
|
||
)
|