mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 19:41:56 +08:00
268 lines
12 KiB
Markdown
268 lines
12 KiB
Markdown
<div align="center">
|
||
|
||
<h1>GPT-SoVITS-WebUI</h1>
|
||
A Powerful Few-shot Voice Conversion and Text-to-Speech WebUI.<br><br>
|
||
|
||
[](https://github.com/RVC-Boss/GPT-SoVITS)
|
||
|
||
<img src="https://counter.seku.su/cmoe?name=gptsovits&theme=r34" /><br>
|
||
|
||
[](https://colab.research.google.com/github/RVC-Boss/GPT-SoVITS/blob/main/colab_webui.ipynb)
|
||
[](https://github.com/RVC-Boss/GPT-SoVITS/blob/main/LICENSE)
|
||
[](https://huggingface.co/lj1995/GPT-SoVITS/tree/main)
|
||
[](https://discord.gg/dnrgs5GHfG)
|
||
|
||
**English** | [**中文简体**](./docs/cn/README.md) | [**日本語**](./docs/ja/README.md) | [**한국어**](./docs/ko/README.md) | [**Türkçe**](./docs/tr/README.md)
|
||
|
||
</div>
|
||
|
||
---
|
||
|
||
## Features:
|
||
|
||
1. **Zero-shot TTS:** Input a 5-second vocal sample and experience instant text-to-speech conversion.
|
||
|
||
2. **Few-shot TTS:** Fine-tune the model with just 1 minute of training data for improved voice similarity and realism.
|
||
|
||
3. **Cross-lingual Support:** Inference in languages different from the training dataset, currently supporting English, Japanese, and Chinese.
|
||
|
||
4. **WebUI Tools:** Integrated tools include voice accompaniment separation, automatic training set segmentation, Chinese ASR, and text labeling, assisting beginners in creating training datasets and GPT/SoVITS models.
|
||
|
||
**Check out our [demo video](https://www.bilibili.com/video/BV12g4y1m7Uw) here!**
|
||
|
||
Unseen speakers few-shot fine-tuning demo:
|
||
|
||
https://github.com/RVC-Boss/GPT-SoVITS/assets/129054828/05bee1fa-bdd8-4d85-9350-80c060ab47fb
|
||
|
||
**User guide: [简体中文](https://www.yuque.com/baicaigongchang1145haoyuangong/ib3g1e) | [English](https://rentry.co/GPT-SoVITS-guide#/)**
|
||
|
||
## Installation
|
||
|
||
For users in the China region, you can [click here](https://www.codewithgpu.com/i/RVC-Boss/GPT-SoVITS/GPT-SoVITS-Official) to use AutoDL Cloud Docker to experience the full functionality online.
|
||
|
||
### Tested Environments
|
||
|
||
- Python 3.9, PyTorch 2.0.1, CUDA 11
|
||
- Python 3.10.13, PyTorch 2.1.2, CUDA 12.3
|
||
- Python 3.9, PyTorch 2.2.2, macOS 14.4.1 (Apple silicon)
|
||
- Python 3.9, PyTorch 2.2.2, CPU devices
|
||
|
||
_Note: numba==0.56.4 requires py<3.11_
|
||
|
||
### Windows
|
||
|
||
If you are a Windows user (tested with win>=10), you can [download the integrated package](https://huggingface.co/lj1995/GPT-SoVITS-windows-package/resolve/main/GPT-SoVITS-beta.7z?download=true) and double-click on _go-webui.bat_ to start GPT-SoVITS-WebUI.
|
||
|
||
Users in the China region can [download the package](https://www.icloud.com.cn/iclouddrive/030K8WjGJ9xMXhpzJVIMEWPzQ#GPT-SoVITS-beta0706fix1) by clicking the link and then selecting "Download a copy." (Log out if you encounter errors while downloading.)
|
||
|
||
### Linux
|
||
|
||
```bash
|
||
conda create -n GPTSoVits python=3.9
|
||
conda activate GPTSoVits
|
||
bash install.sh
|
||
```
|
||
|
||
### macOS
|
||
|
||
**Note: The models trained with GPUs on Macs result in significantly lower quality compared to those trained on other devices, so we are temporarily using CPUs instead.**
|
||
|
||
1. Install Xcode command-line tools by running `xcode-select --install`.
|
||
2. Install FFmpeg by running `brew install ffmpeg`.
|
||
3. Install the program by running the following commands:
|
||
|
||
```bash
|
||
conda create -n GPTSoVits python=3.9
|
||
conda activate GPTSoVits
|
||
|
||
pip install -r requirements.txt
|
||
```
|
||
|
||
### Install Manually
|
||
|
||
#### Install Dependences
|
||
|
||
```bash
|
||
pip install -r requirements.txt
|
||
```
|
||
|
||
#### Install FFmpeg
|
||
|
||
##### Conda Users
|
||
|
||
```bash
|
||
conda install ffmpeg
|
||
```
|
||
|
||
##### Ubuntu/Debian Users
|
||
|
||
```bash
|
||
sudo apt install ffmpeg
|
||
sudo apt install libsox-dev
|
||
conda install -c conda-forge 'ffmpeg<7'
|
||
```
|
||
|
||
##### Windows Users
|
||
|
||
Download and place [ffmpeg.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffmpeg.exe) and [ffprobe.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffprobe.exe) in the GPT-SoVITS root.
|
||
|
||
##### MacOS Users
|
||
```bash
|
||
brew install ffmpeg
|
||
```
|
||
|
||
### Using Docker
|
||
|
||
#### docker-compose.yaml configuration
|
||
|
||
0. Regarding image tags: Due to rapid updates in the codebase and the slow process of packaging and testing images, please check [Docker Hub](https://hub.docker.com/r/breakstring/gpt-sovits) for the currently packaged latest images and select as per your situation, or alternatively, build locally using a Dockerfile according to your own needs.
|
||
1. Environment Variables:
|
||
|
||
- is_half: Controls half-precision/double-precision. This is typically the cause if the content under the directories 4-cnhubert/5-wav32k is not generated correctly during the "SSL extracting" step. Adjust to True or False based on your actual situation.
|
||
|
||
2. Volumes Configuration,The application's root directory inside the container is set to /workspace. The default docker-compose.yaml lists some practical examples for uploading/downloading content.
|
||
3. shm_size: The default available memory for Docker Desktop on Windows is too small, which can cause abnormal operations. Adjust according to your own situation.
|
||
4. Under the deploy section, GPU-related settings should be adjusted cautiously according to your system and actual circumstances.
|
||
|
||
#### Running with docker compose
|
||
|
||
```
|
||
docker compose -f "docker-compose.yaml" up -d
|
||
```
|
||
|
||
#### Running with docker command
|
||
|
||
As above, modify the corresponding parameters based on your actual situation, then run the following command:
|
||
|
||
```
|
||
docker run --rm -it --gpus=all --env=is_half=False --volume=G:\GPT-SoVITS-DockerTest\output:/workspace/output --volume=G:\GPT-SoVITS-DockerTest\logs:/workspace/logs --volume=G:\GPT-SoVITS-DockerTest\SoVITS_weights:/workspace/SoVITS_weights --workdir=/workspace -p 9880:9880 -p 9871:9871 -p 9872:9872 -p 9873:9873 -p 9874:9874 --shm-size="16G" -d breakstring/gpt-sovits:xxxxx
|
||
```
|
||
|
||
## Pretrained Models
|
||
|
||
Download pretrained models from [GPT-SoVITS Models](https://huggingface.co/lj1995/GPT-SoVITS) and place them in `GPT_SoVITS/pretrained_models`.
|
||
|
||
For UVR5 (Vocals/Accompaniment Separation & Reverberation Removal, additionally), download models from [UVR5 Weights](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/uvr5_weights) and place them in `tools/uvr5/uvr5_weights`.
|
||
|
||
Users in the China region can download these two models by entering the links below and clicking "Download a copy"(Log out if you encounter errors while downloading.)
|
||
|
||
- [GPT-SoVITS Models](https://www.icloud.com.cn/iclouddrive/056y_Xog_HXpALuVUjscIwTtg#GPT-SoVITS_Models)
|
||
|
||
- [UVR5 Weights](https://www.icloud.com.cn/iclouddrive/0bekRKDiJXboFhbfm3lM2fVbA#UVR5_Weights)
|
||
|
||
For Chinese ASR (additionally), download models from [Damo ASR Model](https://modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/files), [Damo VAD Model](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/files), and [Damo Punc Model](https://modelscope.cn/models/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch/files) and place them in `tools/asr/models`.
|
||
|
||
For English or Japanese ASR (additionally), download models from [Faster Whisper Large V3](https://huggingface.co/Systran/faster-whisper-large-v3) and place them in `tools/asr/models`. Also, [other models](https://huggingface.co/Systran) may have the similar effect with smaller disk footprint.
|
||
|
||
Users in the China region can download this model by entering the links below
|
||
|
||
- [Faster Whisper Large V3](https://www.icloud.com/iclouddrive/00bUEp9_mcjMq_dhHu_vrAFDQ#faster-whisper-large-v3) (Click "Download a copy", log out if you encounter errors while downloading.)
|
||
|
||
- [Faster Whisper Large V3](https://hf-mirror.com/Systran/faster-whisper-large-v3) (HuggingFace mirror site)
|
||
|
||
## Dataset Format
|
||
|
||
The TTS annotation .list file format:
|
||
|
||
```
|
||
vocal_path|speaker_name|language|text
|
||
```
|
||
|
||
Language dictionary:
|
||
|
||
- 'zh': Chinese
|
||
- 'ja': Japanese
|
||
- 'en': English
|
||
- 'ko': Korean
|
||
- 'yue': Cantonese
|
||
|
||
Example:
|
||
|
||
```
|
||
D:\GPT-SoVITS\xxx/xxx.wav|xxx|en|I like playing Genshin.
|
||
```
|
||
|
||
## Todo List
|
||
|
||
- [ ] **High Priority:**
|
||
|
||
- [x] Localization in Japanese and English.
|
||
- [x] User guide.
|
||
- [x] Japanese and English dataset fine tune training.
|
||
|
||
- [ ] **Features:**
|
||
- [x] Zero-shot voice conversion (5s) / few-shot voice conversion (1min).
|
||
- [x] TTS speaking speed control.
|
||
- [ ] ~~Enhanced TTS emotion control.~~
|
||
- [ ] Experiment with changing SoVITS token inputs to probability distribution of GPT vocabs (transformer latent).
|
||
- [x] Improve English and Japanese text frontend.
|
||
- [ ] Develop tiny and larger-sized TTS models.
|
||
- [x] Colab scripts.
|
||
- [ ] Try expand training dataset (2k hours -> 10k hours).
|
||
- [x] better sovits base model (enhanced audio quality)
|
||
- [ ] model mix
|
||
|
||
## (Additional) Method for running from the command line
|
||
Use the command line to open the WebUI for UVR5
|
||
```
|
||
python tools/uvr5/webui.py "<infer_device>" <is_half> <webui_port_uvr5>
|
||
```
|
||
If you can't open a browser, follow the format below for UVR processing,This is using mdxnet for audio processing
|
||
```
|
||
python mdxnet.py --model --input_root --output_vocal --output_ins --agg_level --format --device --is_half_precision
|
||
```
|
||
This is how the audio segmentation of the dataset is done using the command line
|
||
```
|
||
python audio_slicer.py \
|
||
--input_path "<path_to_original_audio_file_or_directory>" \
|
||
--output_root "<directory_where_subdivided_audio_clips_will_be_saved>" \
|
||
--threshold <volume_threshold> \
|
||
--min_length <minimum_duration_of_each_subclip> \
|
||
--min_interval <shortest_time_gap_between_adjacent_subclips>
|
||
--hop_size <step_size_for_computing_volume_curve>
|
||
```
|
||
This is how dataset ASR processing is done using the command line(Only Chinese)
|
||
```
|
||
python tools/asr/funasr_asr.py -i <input> -o <output>
|
||
```
|
||
ASR processing is performed through Faster_Whisper(ASR marking except Chinese)
|
||
|
||
(No progress bars, GPU performance may cause time delays)
|
||
```
|
||
python ./tools/asr/fasterwhisper_asr.py -i <input> -o <output> -l <language> -p <precision>
|
||
```
|
||
A custom list save path is enabled
|
||
|
||
## Credits
|
||
|
||
Special thanks to the following projects and contributors:
|
||
|
||
### Theoretical Research
|
||
- [ar-vits](https://github.com/innnky/ar-vits)
|
||
- [SoundStorm](https://github.com/yangdongchao/SoundStorm/tree/master/soundstorm/s1/AR)
|
||
- [vits](https://github.com/jaywalnut310/vits)
|
||
- [TransferTTS](https://github.com/hcy71o/TransferTTS/blob/master/models.py#L556)
|
||
- [contentvec](https://github.com/auspicious3000/contentvec/)
|
||
- [hifi-gan](https://github.com/jik876/hifi-gan)
|
||
- [fish-speech](https://github.com/fishaudio/fish-speech/blob/main/tools/llama/generate.py#L41)
|
||
### Pretrained Models
|
||
- [Chinese Speech Pretrain](https://github.com/TencentGameMate/chinese_speech_pretrain)
|
||
- [Chinese-Roberta-WWM-Ext-Large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large)
|
||
### Text Frontend for Inference
|
||
- [paddlespeech zh_normalization](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/paddlespeech/t2s/frontend/zh_normalization)
|
||
- [LangSegment](https://github.com/juntaosun/LangSegment)
|
||
### WebUI Tools
|
||
- [ultimatevocalremovergui](https://github.com/Anjok07/ultimatevocalremovergui)
|
||
- [audio-slicer](https://github.com/openvpi/audio-slicer)
|
||
- [SubFix](https://github.com/cronrpc/SubFix)
|
||
- [FFmpeg](https://github.com/FFmpeg/FFmpeg)
|
||
- [gradio](https://github.com/gradio-app/gradio)
|
||
- [faster-whisper](https://github.com/SYSTRAN/faster-whisper)
|
||
- [FunASR](https://github.com/alibaba-damo-academy/FunASR)
|
||
|
||
## Thanks to all contributors for their efforts
|
||
|
||
<a href="https://github.com/RVC-Boss/GPT-SoVITS/graphs/contributors" target="_blank">
|
||
<img src="https://contrib.rocks/image?repo=RVC-Boss/GPT-SoVITS" />
|
||
</a>
|