mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-06 03:57:44 +08:00
54 lines
1.6 KiB
Python
54 lines
1.6 KiB
Python
import os
|
||
import torch
|
||
from transformers import AutoTokenizer, AutoModel
|
||
from scipy.spatial.distance import cosine
|
||
import math
|
||
|
||
bert_path = os.environ.get(
|
||
"bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
|
||
)
|
||
|
||
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
||
model = AutoModel.from_pretrained(bert_path)
|
||
|
||
|
||
def calculate_similarity(text1, text2, max_length=512):
|
||
# 预处理文本,设置最大长度
|
||
inputs1 = tokenizer(text1, padding=True, truncation=True, max_length=max_length, return_tensors='pt')
|
||
inputs2 = tokenizer(text2, padding=True, truncation=True, max_length=max_length, return_tensors='pt')
|
||
|
||
# 获取句子向量(这里是取CLS token的向量并展平为一维)
|
||
with torch.no_grad():
|
||
encoded_text1 = model(**inputs1)[0][:, 0, :].flatten()
|
||
encoded_text2 = model(**inputs2)[0][:, 0, :].flatten()
|
||
|
||
# 确保转换为numpy数组并且是一维的
|
||
similarity = 1 - cosine(encoded_text1.cpu().numpy().flatten(), encoded_text2.cpu().numpy().flatten())
|
||
|
||
return similarity
|
||
|
||
|
||
# 对boundary到1区间的值进行放大
|
||
def adjusted_similarity(similarity_score2, boundary=0.8):
|
||
if similarity_score2 < boundary:
|
||
return 0
|
||
|
||
# 倍数
|
||
multiple = 1 / (1 - boundary)
|
||
|
||
adjusted_score = (similarity_score2 - boundary) * multiple
|
||
|
||
return adjusted_score
|
||
|
||
|
||
def calculate_result(t1, t2, boundary):
|
||
# 计算并打印相似度
|
||
similarity_score2 = calculate_similarity(t1, t2)
|
||
|
||
# 调整相似度
|
||
adjusted_similarity_score2 = adjusted_similarity(similarity_score2, boundary)
|
||
|
||
return similarity_score2, adjusted_similarity_score2
|
||
|
||
|