GPT-SoVITS/tools/asr/funasr_asr.py
2025-10-05 14:37:24 +01:00

121 lines
4.4 KiB
Python

# -*- coding:utf-8 -*-
import argparse
import os
import traceback
from funasr import AutoModel
from modelscope import snapshot_download
from tqdm import tqdm
funasr_models = {} # 存储模型避免重复加载
def only_asr(input_file, language):
try:
model = create_model(language)
text = model.generate(input=input_file)[0]["text"]
except Exception:
text = ""
print(traceback.format_exc())
return text
def create_model(language="zh"):
if language == "zh":
path_vad = "tools/asr/models/speech_fsmn_vad_zh-cn-16k-common-pytorch"
path_punc = "tools/asr/models/punc_ct-transformer_zh-cn-common-vocab272727-pytorch"
path_asr = "tools/asr/models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
snapshot_download(
"iic/speech_fsmn_vad_zh-cn-16k-common-pytorch",
local_dir="tools/asr/models/speech_fsmn_vad_zh-cn-16k-common-pytorch",
)
snapshot_download(
"iic/punc_ct-transformer_zh-cn-common-vocab272727-pytorch",
local_dir="tools/asr/models/punc_ct-transformer_zh-cn-common-vocab272727-pytorch",
)
snapshot_download(
"iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
local_dir="tools/asr/models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
)
model_revision = "v2.0.4"
elif language == "yue":
path_asr = "tools/asr/models/speech_UniASR_asr_2pass-cantonese-CHS-16k-common-vocab1468-tensorflow1-online"
snapshot_download(
"iic/speech_UniASR_asr_2pass-cantonese-CHS-16k-common-vocab1468-tensorflow1-online",
local_dir="tools/asr/models/speech_UniASR_asr_2pass-cantonese-CHS-16k-common-vocab1468-tensorflow1-online",
)
path_vad = path_punc = None
vad_model_revision = punc_model_revision = ""
model_revision = "master"
else:
raise ValueError(f"{language} is not supported")
vad_model_revision = punc_model_revision = "v2.0.4"
if language in funasr_models:
return funasr_models[language]
else:
model = AutoModel(
model=path_asr,
model_revision=model_revision,
vad_model=path_vad,
vad_model_revision=vad_model_revision,
punc_model=path_punc,
punc_model_revision=punc_model_revision,
)
print(f"FunASR 模型加载完成: {language.upper()}")
funasr_models[language] = model
return model
def execute_asr(input_folder, output_folder, model_size, language):
input_file_names = os.listdir(input_folder)
input_file_names.sort()
output = []
output_file_name = os.path.basename(input_folder)
model = create_model(language)
for file_name in tqdm(input_file_names):
try:
print("\n" + file_name)
file_path = os.path.join(input_folder, file_name)
text = model.generate(input=file_path)[0]["text"]
output.append(f"{file_path}|{output_file_name}|{language.upper()}|{text}")
except Exception:
print(traceback.format_exc())
output_folder = output_folder or "output/asr_opt"
os.makedirs(output_folder, exist_ok=True)
output_file_path = os.path.abspath(f"{output_folder}/{output_file_name}.list")
with open(output_file_path, "w", encoding="utf-8") as f:
f.write("\n".join(output))
print(f"ASR 任务完成->标注文件路径: {output_file_path}\n")
return output_file_path
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-i", "--input_folder", type=str, required=True, help="Path to the folder containing WAV files."
)
parser.add_argument("-o", "--output_folder", type=str, required=True, help="Output folder to store transcriptions.")
parser.add_argument("-s", "--model_size", type=str, default="large", help="Model Size of FunASR is Large")
parser.add_argument(
"-l", "--language", type=str, default="zh", choices=["zh", "yue", "auto"], help="Language of the audio files."
)
parser.add_argument(
"-p", "--precision", type=str, default="float16", choices=["float16", "float32"], help="fp16 or fp32"
) # 还没接入
cmd = parser.parse_args()
execute_asr(
input_folder=cmd.input_folder,
output_folder=cmd.output_folder,
model_size=cmd.model_size,
language=cmd.language,
)