mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 19:41:56 +08:00
1001 lines
32 KiB
Python
1001 lines
32 KiB
Python
import copy
|
|
import math
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
|
|
from module import commons
|
|
from module import modules
|
|
from module import attentions
|
|
|
|
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
|
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
|
from module.commons import init_weights, get_padding
|
|
from module.mrte_model import MRTE
|
|
from module.quantize import ResidualVectorQuantizer
|
|
from text import symbols
|
|
from torch.cuda.amp import autocast
|
|
import contextlib
|
|
|
|
|
|
class StochasticDurationPredictor(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
filter_channels,
|
|
kernel_size,
|
|
p_dropout,
|
|
n_flows=4,
|
|
gin_channels=0,
|
|
):
|
|
super().__init__()
|
|
filter_channels = in_channels # it needs to be removed from future version.
|
|
self.in_channels = in_channels
|
|
self.filter_channels = filter_channels
|
|
self.kernel_size = kernel_size
|
|
self.p_dropout = p_dropout
|
|
self.n_flows = n_flows
|
|
self.gin_channels = gin_channels
|
|
|
|
self.log_flow = modules.Log()
|
|
self.flows = nn.ModuleList()
|
|
self.flows.append(modules.ElementwiseAffine(2))
|
|
for i in range(n_flows):
|
|
self.flows.append(
|
|
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
|
)
|
|
self.flows.append(modules.Flip())
|
|
|
|
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
|
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
|
self.post_convs = modules.DDSConv(
|
|
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
|
)
|
|
self.post_flows = nn.ModuleList()
|
|
self.post_flows.append(modules.ElementwiseAffine(2))
|
|
for i in range(4):
|
|
self.post_flows.append(
|
|
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
|
)
|
|
self.post_flows.append(modules.Flip())
|
|
|
|
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
|
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
|
self.convs = modules.DDSConv(
|
|
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
|
)
|
|
if gin_channels != 0:
|
|
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
|
|
|
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
|
x = torch.detach(x)
|
|
x = self.pre(x)
|
|
if g is not None:
|
|
g = torch.detach(g)
|
|
x = x + self.cond(g)
|
|
x = self.convs(x, x_mask)
|
|
x = self.proj(x) * x_mask
|
|
|
|
if not reverse:
|
|
flows = self.flows
|
|
assert w is not None
|
|
|
|
logdet_tot_q = 0
|
|
h_w = self.post_pre(w)
|
|
h_w = self.post_convs(h_w, x_mask)
|
|
h_w = self.post_proj(h_w) * x_mask
|
|
e_q = (
|
|
torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype)
|
|
* x_mask
|
|
)
|
|
z_q = e_q
|
|
for flow in self.post_flows:
|
|
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
|
logdet_tot_q += logdet_q
|
|
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
|
u = torch.sigmoid(z_u) * x_mask
|
|
z0 = (w - u) * x_mask
|
|
logdet_tot_q += torch.sum(
|
|
(F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]
|
|
)
|
|
logq = (
|
|
torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2])
|
|
- logdet_tot_q
|
|
)
|
|
|
|
logdet_tot = 0
|
|
z0, logdet = self.log_flow(z0, x_mask)
|
|
logdet_tot += logdet
|
|
z = torch.cat([z0, z1], 1)
|
|
for flow in flows:
|
|
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
|
logdet_tot = logdet_tot + logdet
|
|
nll = (
|
|
torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2])
|
|
- logdet_tot
|
|
)
|
|
return nll + logq # [b]
|
|
else:
|
|
flows = list(reversed(self.flows))
|
|
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
|
z = (
|
|
torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype)
|
|
* noise_scale
|
|
)
|
|
for flow in flows:
|
|
z = flow(z, x_mask, g=x, reverse=reverse)
|
|
z0, z1 = torch.split(z, [1, 1], 1)
|
|
logw = z0
|
|
return logw
|
|
|
|
|
|
class DurationPredictor(nn.Module):
|
|
def __init__(
|
|
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
|
):
|
|
super().__init__()
|
|
|
|
self.in_channels = in_channels
|
|
self.filter_channels = filter_channels
|
|
self.kernel_size = kernel_size
|
|
self.p_dropout = p_dropout
|
|
self.gin_channels = gin_channels
|
|
|
|
self.drop = nn.Dropout(p_dropout)
|
|
self.conv_1 = nn.Conv1d(
|
|
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
|
)
|
|
self.norm_1 = modules.LayerNorm(filter_channels)
|
|
self.conv_2 = nn.Conv1d(
|
|
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
|
)
|
|
self.norm_2 = modules.LayerNorm(filter_channels)
|
|
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
|
|
|
if gin_channels != 0:
|
|
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
|
|
|
def forward(self, x, x_mask, g=None):
|
|
x = torch.detach(x)
|
|
if g is not None:
|
|
g = torch.detach(g)
|
|
x = x + self.cond(g)
|
|
x = self.conv_1(x * x_mask)
|
|
x = torch.relu(x)
|
|
x = self.norm_1(x)
|
|
x = self.drop(x)
|
|
x = self.conv_2(x * x_mask)
|
|
x = torch.relu(x)
|
|
x = self.norm_2(x)
|
|
x = self.drop(x)
|
|
x = self.proj(x * x_mask)
|
|
return x * x_mask
|
|
|
|
|
|
class TextEncoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
out_channels,
|
|
hidden_channels,
|
|
filter_channels,
|
|
n_heads,
|
|
n_layers,
|
|
kernel_size,
|
|
p_dropout,
|
|
latent_channels=192,
|
|
):
|
|
super().__init__()
|
|
self.out_channels = out_channels
|
|
self.hidden_channels = hidden_channels
|
|
self.filter_channels = filter_channels
|
|
self.n_heads = n_heads
|
|
self.n_layers = n_layers
|
|
self.kernel_size = kernel_size
|
|
self.p_dropout = p_dropout
|
|
self.latent_channels = latent_channels
|
|
|
|
self.ssl_proj = nn.Conv1d(768, hidden_channels, 1)
|
|
|
|
self.encoder_ssl = attentions.Encoder(
|
|
hidden_channels,
|
|
filter_channels,
|
|
n_heads,
|
|
n_layers // 2,
|
|
kernel_size,
|
|
p_dropout,
|
|
)
|
|
|
|
self.encoder_text = attentions.Encoder(
|
|
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
|
)
|
|
self.text_embedding = nn.Embedding(len(symbols), hidden_channels)
|
|
|
|
self.mrte = MRTE()
|
|
|
|
self.encoder2 = attentions.Encoder(
|
|
hidden_channels,
|
|
filter_channels,
|
|
n_heads,
|
|
n_layers // 2,
|
|
kernel_size,
|
|
p_dropout,
|
|
)
|
|
|
|
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
|
|
|
def forward(self, y, y_lengths, text, text_lengths, ge, speed=1,test=None):
|
|
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(
|
|
y.dtype
|
|
)
|
|
|
|
y = self.ssl_proj(y * y_mask) * y_mask
|
|
|
|
y = self.encoder_ssl(y * y_mask, y_mask)
|
|
|
|
text_mask = torch.unsqueeze(
|
|
commons.sequence_mask(text_lengths, text.size(1)), 1
|
|
).to(y.dtype)
|
|
if test == 1:
|
|
text[:, :] = 0
|
|
text = self.text_embedding(text).transpose(1, 2)
|
|
text = self.encoder_text(text * text_mask, text_mask)
|
|
y = self.mrte(y, y_mask, text, text_mask, ge)
|
|
y = self.encoder2(y * y_mask, y_mask)
|
|
if(speed!=1):
|
|
y = F.interpolate(y, size=int(y.shape[-1] / speed)+1, mode="linear")
|
|
y_mask = F.interpolate(y_mask, size=y.shape[-1], mode="nearest")
|
|
stats = self.proj(y) * y_mask
|
|
m, logs = torch.split(stats, self.out_channels, dim=1)
|
|
return y, m, logs, y_mask
|
|
|
|
def extract_latent(self, x):
|
|
x = self.ssl_proj(x)
|
|
quantized, codes, commit_loss, quantized_list = self.quantizer(x)
|
|
return codes.transpose(0, 1)
|
|
|
|
def decode_latent(self, codes, y_mask, refer, refer_mask, ge):
|
|
quantized = self.quantizer.decode(codes)
|
|
|
|
y = self.vq_proj(quantized) * y_mask
|
|
y = self.encoder_ssl(y * y_mask, y_mask)
|
|
|
|
y = self.mrte(y, y_mask, refer, refer_mask, ge)
|
|
|
|
y = self.encoder2(y * y_mask, y_mask)
|
|
|
|
stats = self.proj(y) * y_mask
|
|
m, logs = torch.split(stats, self.out_channels, dim=1)
|
|
return y, m, logs, y_mask, quantized
|
|
|
|
|
|
class ResidualCouplingBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
channels,
|
|
hidden_channels,
|
|
kernel_size,
|
|
dilation_rate,
|
|
n_layers,
|
|
n_flows=4,
|
|
gin_channels=0,
|
|
):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.hidden_channels = hidden_channels
|
|
self.kernel_size = kernel_size
|
|
self.dilation_rate = dilation_rate
|
|
self.n_layers = n_layers
|
|
self.n_flows = n_flows
|
|
self.gin_channels = gin_channels
|
|
|
|
self.flows = nn.ModuleList()
|
|
for i in range(n_flows):
|
|
self.flows.append(
|
|
modules.ResidualCouplingLayer(
|
|
channels,
|
|
hidden_channels,
|
|
kernel_size,
|
|
dilation_rate,
|
|
n_layers,
|
|
gin_channels=gin_channels,
|
|
mean_only=True,
|
|
)
|
|
)
|
|
self.flows.append(modules.Flip())
|
|
|
|
def forward(self, x, x_mask, g=None, reverse=False):
|
|
if not reverse:
|
|
for flow in self.flows:
|
|
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
|
else:
|
|
for flow in reversed(self.flows):
|
|
x = flow(x, x_mask, g=g, reverse=reverse)
|
|
return x
|
|
|
|
|
|
class PosteriorEncoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
out_channels,
|
|
hidden_channels,
|
|
kernel_size,
|
|
dilation_rate,
|
|
n_layers,
|
|
gin_channels=0,
|
|
):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.hidden_channels = hidden_channels
|
|
self.kernel_size = kernel_size
|
|
self.dilation_rate = dilation_rate
|
|
self.n_layers = n_layers
|
|
self.gin_channels = gin_channels
|
|
|
|
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
|
self.enc = modules.WN(
|
|
hidden_channels,
|
|
kernel_size,
|
|
dilation_rate,
|
|
n_layers,
|
|
gin_channels=gin_channels,
|
|
)
|
|
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
|
|
|
def forward(self, x, x_lengths, g=None):
|
|
if g != None:
|
|
g = g.detach()
|
|
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
|
x.dtype
|
|
)
|
|
x = self.pre(x) * x_mask
|
|
x = self.enc(x, x_mask, g=g)
|
|
stats = self.proj(x) * x_mask
|
|
m, logs = torch.split(stats, self.out_channels, dim=1)
|
|
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
|
return z, m, logs, x_mask
|
|
|
|
|
|
class WNEncoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
out_channels,
|
|
hidden_channels,
|
|
kernel_size,
|
|
dilation_rate,
|
|
n_layers,
|
|
gin_channels=0,
|
|
):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.hidden_channels = hidden_channels
|
|
self.kernel_size = kernel_size
|
|
self.dilation_rate = dilation_rate
|
|
self.n_layers = n_layers
|
|
self.gin_channels = gin_channels
|
|
|
|
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
|
self.enc = modules.WN(
|
|
hidden_channels,
|
|
kernel_size,
|
|
dilation_rate,
|
|
n_layers,
|
|
gin_channels=gin_channels,
|
|
)
|
|
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
|
self.norm = modules.LayerNorm(out_channels)
|
|
|
|
def forward(self, x, x_lengths, g=None):
|
|
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
|
x.dtype
|
|
)
|
|
x = self.pre(x) * x_mask
|
|
x = self.enc(x, x_mask, g=g)
|
|
out = self.proj(x) * x_mask
|
|
out = self.norm(out)
|
|
return out
|
|
|
|
|
|
class Generator(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
initial_channel,
|
|
resblock,
|
|
resblock_kernel_sizes,
|
|
resblock_dilation_sizes,
|
|
upsample_rates,
|
|
upsample_initial_channel,
|
|
upsample_kernel_sizes,
|
|
gin_channels=0,
|
|
):
|
|
super(Generator, self).__init__()
|
|
self.num_kernels = len(resblock_kernel_sizes)
|
|
self.num_upsamples = len(upsample_rates)
|
|
self.conv_pre = Conv1d(
|
|
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
|
)
|
|
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
|
|
|
self.ups = nn.ModuleList()
|
|
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
|
self.ups.append(
|
|
weight_norm(
|
|
ConvTranspose1d(
|
|
upsample_initial_channel // (2**i),
|
|
upsample_initial_channel // (2 ** (i + 1)),
|
|
k,
|
|
u,
|
|
padding=(k - u) // 2,
|
|
)
|
|
)
|
|
)
|
|
|
|
self.resblocks = nn.ModuleList()
|
|
for i in range(len(self.ups)):
|
|
ch = upsample_initial_channel // (2 ** (i + 1))
|
|
for j, (k, d) in enumerate(
|
|
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
|
):
|
|
self.resblocks.append(resblock(ch, k, d))
|
|
|
|
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
|
self.ups.apply(init_weights)
|
|
|
|
if gin_channels != 0:
|
|
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
|
|
|
def forward(self, x, g=None):
|
|
x = self.conv_pre(x)
|
|
if g is not None:
|
|
x = x + self.cond(g)
|
|
|
|
for i in range(self.num_upsamples):
|
|
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
|
x = self.ups[i](x)
|
|
xs = None
|
|
for j in range(self.num_kernels):
|
|
if xs is None:
|
|
xs = self.resblocks[i * self.num_kernels + j](x)
|
|
else:
|
|
xs += self.resblocks[i * self.num_kernels + j](x)
|
|
x = xs / self.num_kernels
|
|
x = F.leaky_relu(x)
|
|
x = self.conv_post(x)
|
|
x = torch.tanh(x)
|
|
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
print("Removing weight norm...")
|
|
for l in self.ups:
|
|
remove_weight_norm(l)
|
|
for l in self.resblocks:
|
|
l.remove_weight_norm()
|
|
|
|
|
|
class DiscriminatorP(torch.nn.Module):
|
|
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
|
super(DiscriminatorP, self).__init__()
|
|
self.period = period
|
|
self.use_spectral_norm = use_spectral_norm
|
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
|
self.convs = nn.ModuleList(
|
|
[
|
|
norm_f(
|
|
Conv2d(
|
|
1,
|
|
32,
|
|
(kernel_size, 1),
|
|
(stride, 1),
|
|
padding=(get_padding(kernel_size, 1), 0),
|
|
)
|
|
),
|
|
norm_f(
|
|
Conv2d(
|
|
32,
|
|
128,
|
|
(kernel_size, 1),
|
|
(stride, 1),
|
|
padding=(get_padding(kernel_size, 1), 0),
|
|
)
|
|
),
|
|
norm_f(
|
|
Conv2d(
|
|
128,
|
|
512,
|
|
(kernel_size, 1),
|
|
(stride, 1),
|
|
padding=(get_padding(kernel_size, 1), 0),
|
|
)
|
|
),
|
|
norm_f(
|
|
Conv2d(
|
|
512,
|
|
1024,
|
|
(kernel_size, 1),
|
|
(stride, 1),
|
|
padding=(get_padding(kernel_size, 1), 0),
|
|
)
|
|
),
|
|
norm_f(
|
|
Conv2d(
|
|
1024,
|
|
1024,
|
|
(kernel_size, 1),
|
|
1,
|
|
padding=(get_padding(kernel_size, 1), 0),
|
|
)
|
|
),
|
|
]
|
|
)
|
|
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
|
|
|
def forward(self, x):
|
|
fmap = []
|
|
|
|
# 1d to 2d
|
|
b, c, t = x.shape
|
|
if t % self.period != 0: # pad first
|
|
n_pad = self.period - (t % self.period)
|
|
x = F.pad(x, (0, n_pad), "reflect")
|
|
t = t + n_pad
|
|
x = x.view(b, c, t // self.period, self.period)
|
|
|
|
for l in self.convs:
|
|
x = l(x)
|
|
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
|
fmap.append(x)
|
|
x = self.conv_post(x)
|
|
fmap.append(x)
|
|
x = torch.flatten(x, 1, -1)
|
|
|
|
return x, fmap
|
|
|
|
|
|
class DiscriminatorS(torch.nn.Module):
|
|
def __init__(self, use_spectral_norm=False):
|
|
super(DiscriminatorS, self).__init__()
|
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
|
self.convs = nn.ModuleList(
|
|
[
|
|
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
|
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
|
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
|
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
|
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
|
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
|
]
|
|
)
|
|
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
|
|
|
def forward(self, x):
|
|
fmap = []
|
|
|
|
for l in self.convs:
|
|
x = l(x)
|
|
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
|
fmap.append(x)
|
|
x = self.conv_post(x)
|
|
fmap.append(x)
|
|
x = torch.flatten(x, 1, -1)
|
|
|
|
return x, fmap
|
|
|
|
|
|
class MultiPeriodDiscriminator(torch.nn.Module):
|
|
def __init__(self, use_spectral_norm=False):
|
|
super(MultiPeriodDiscriminator, self).__init__()
|
|
periods = [2, 3, 5, 7, 11]
|
|
|
|
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
|
discs = discs + [
|
|
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
|
]
|
|
self.discriminators = nn.ModuleList(discs)
|
|
|
|
def forward(self, y, y_hat):
|
|
y_d_rs = []
|
|
y_d_gs = []
|
|
fmap_rs = []
|
|
fmap_gs = []
|
|
for i, d in enumerate(self.discriminators):
|
|
y_d_r, fmap_r = d(y)
|
|
y_d_g, fmap_g = d(y_hat)
|
|
y_d_rs.append(y_d_r)
|
|
y_d_gs.append(y_d_g)
|
|
fmap_rs.append(fmap_r)
|
|
fmap_gs.append(fmap_g)
|
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
|
|
|
|
|
class ReferenceEncoder(nn.Module):
|
|
"""
|
|
inputs --- [N, Ty/r, n_mels*r] mels
|
|
outputs --- [N, ref_enc_gru_size]
|
|
"""
|
|
|
|
def __init__(self, spec_channels, gin_channels=0):
|
|
super().__init__()
|
|
self.spec_channels = spec_channels
|
|
ref_enc_filters = [32, 32, 64, 64, 128, 128]
|
|
K = len(ref_enc_filters)
|
|
filters = [1] + ref_enc_filters
|
|
convs = [
|
|
weight_norm(
|
|
nn.Conv2d(
|
|
in_channels=filters[i],
|
|
out_channels=filters[i + 1],
|
|
kernel_size=(3, 3),
|
|
stride=(2, 2),
|
|
padding=(1, 1),
|
|
)
|
|
)
|
|
for i in range(K)
|
|
]
|
|
self.convs = nn.ModuleList(convs)
|
|
# self.wns = nn.ModuleList([weight_norm(num_features=ref_enc_filters[i]) for i in range(K)])
|
|
|
|
out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K)
|
|
self.gru = nn.GRU(
|
|
input_size=ref_enc_filters[-1] * out_channels,
|
|
hidden_size=256 // 2,
|
|
batch_first=True,
|
|
)
|
|
self.proj = nn.Linear(128, gin_channels)
|
|
|
|
def forward(self, inputs):
|
|
N = inputs.size(0)
|
|
out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs]
|
|
for conv in self.convs:
|
|
out = conv(out)
|
|
# out = wn(out)
|
|
out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K]
|
|
|
|
out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K]
|
|
T = out.size(1)
|
|
N = out.size(0)
|
|
out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K]
|
|
|
|
self.gru.flatten_parameters()
|
|
memory, out = self.gru(out) # out --- [1, N, 128]
|
|
|
|
return self.proj(out.squeeze(0)).unsqueeze(-1)
|
|
|
|
def calculate_channels(self, L, kernel_size, stride, pad, n_convs):
|
|
for i in range(n_convs):
|
|
L = (L - kernel_size + 2 * pad) // stride + 1
|
|
return L
|
|
|
|
|
|
class Quantizer_module(torch.nn.Module):
|
|
def __init__(self, n_e, e_dim):
|
|
super(Quantizer_module, self).__init__()
|
|
self.embedding = nn.Embedding(n_e, e_dim)
|
|
self.embedding.weight.data.uniform_(-1.0 / n_e, 1.0 / n_e)
|
|
|
|
def forward(self, x):
|
|
d = (
|
|
torch.sum(x**2, 1, keepdim=True)
|
|
+ torch.sum(self.embedding.weight**2, 1)
|
|
- 2 * torch.matmul(x, self.embedding.weight.T)
|
|
)
|
|
min_indicies = torch.argmin(d, 1)
|
|
z_q = self.embedding(min_indicies)
|
|
return z_q, min_indicies
|
|
|
|
|
|
class Quantizer(torch.nn.Module):
|
|
def __init__(self, embed_dim=512, n_code_groups=4, n_codes=160):
|
|
super(Quantizer, self).__init__()
|
|
assert embed_dim % n_code_groups == 0
|
|
self.quantizer_modules = nn.ModuleList(
|
|
[
|
|
Quantizer_module(n_codes, embed_dim // n_code_groups)
|
|
for _ in range(n_code_groups)
|
|
]
|
|
)
|
|
self.n_code_groups = n_code_groups
|
|
self.embed_dim = embed_dim
|
|
|
|
def forward(self, xin):
|
|
# B, C, T
|
|
B, C, T = xin.shape
|
|
xin = xin.transpose(1, 2)
|
|
x = xin.reshape(-1, self.embed_dim)
|
|
x = torch.split(x, self.embed_dim // self.n_code_groups, dim=-1)
|
|
min_indicies = []
|
|
z_q = []
|
|
for _x, m in zip(x, self.quantizer_modules):
|
|
_z_q, _min_indicies = m(_x)
|
|
z_q.append(_z_q)
|
|
min_indicies.append(_min_indicies) # B * T,
|
|
z_q = torch.cat(z_q, -1).reshape(xin.shape)
|
|
loss = 0.25 * torch.mean((z_q.detach() - xin) ** 2) + torch.mean(
|
|
(z_q - xin.detach()) ** 2
|
|
)
|
|
z_q = xin + (z_q - xin).detach()
|
|
z_q = z_q.transpose(1, 2)
|
|
codes = torch.stack(min_indicies, -1).reshape(B, T, self.n_code_groups)
|
|
return z_q, loss, codes.transpose(1, 2)
|
|
|
|
def embed(self, x):
|
|
# idx: N, 4, T
|
|
x = x.transpose(1, 2)
|
|
x = torch.split(x, 1, 2)
|
|
ret = []
|
|
for q, embed in zip(x, self.quantizer_modules):
|
|
q = embed.embedding(q.squeeze(-1))
|
|
ret.append(q)
|
|
ret = torch.cat(ret, -1)
|
|
return ret.transpose(1, 2) # N, C, T
|
|
|
|
|
|
class CodePredictor(nn.Module):
|
|
def __init__(
|
|
self,
|
|
hidden_channels,
|
|
filter_channels,
|
|
n_heads,
|
|
n_layers,
|
|
kernel_size,
|
|
p_dropout,
|
|
n_q=8,
|
|
dims=1024,
|
|
ssl_dim=768,
|
|
):
|
|
super().__init__()
|
|
self.hidden_channels = hidden_channels
|
|
self.filter_channels = filter_channels
|
|
self.n_heads = n_heads
|
|
self.n_layers = n_layers
|
|
self.kernel_size = kernel_size
|
|
self.p_dropout = p_dropout
|
|
|
|
self.vq_proj = nn.Conv1d(ssl_dim, hidden_channels, 1)
|
|
self.ref_enc = modules.MelStyleEncoder(
|
|
ssl_dim, style_vector_dim=hidden_channels
|
|
)
|
|
|
|
self.encoder = attentions.Encoder(
|
|
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
|
)
|
|
|
|
self.out_proj = nn.Conv1d(hidden_channels, (n_q - 1) * dims, 1)
|
|
self.n_q = n_q
|
|
self.dims = dims
|
|
|
|
def forward(self, x, x_mask, refer, codes, infer=False):
|
|
x = x.detach()
|
|
x = self.vq_proj(x * x_mask) * x_mask
|
|
g = self.ref_enc(refer, x_mask)
|
|
x = x + g
|
|
x = self.encoder(x * x_mask, x_mask)
|
|
x = self.out_proj(x * x_mask) * x_mask
|
|
logits = x.reshape(x.shape[0], self.n_q - 1, self.dims, x.shape[-1]).transpose(
|
|
2, 3
|
|
)
|
|
target = codes[1:].transpose(0, 1)
|
|
if not infer:
|
|
logits = logits.reshape(-1, self.dims)
|
|
target = target.reshape(-1)
|
|
loss = torch.nn.functional.cross_entropy(logits, target)
|
|
return loss
|
|
else:
|
|
_, top10_preds = torch.topk(logits, 10, dim=-1)
|
|
correct_top10 = torch.any(top10_preds == target.unsqueeze(-1), dim=-1)
|
|
top3_acc = 100 * torch.mean(correct_top10.float()).detach().cpu().item()
|
|
|
|
print("Top-10 Accuracy:", top3_acc, "%")
|
|
|
|
pred_codes = torch.argmax(logits, dim=-1)
|
|
acc = 100 * torch.mean((pred_codes == target).float()).detach().cpu().item()
|
|
print("Top-1 Accuracy:", acc, "%")
|
|
|
|
return pred_codes.transpose(0, 1)
|
|
|
|
|
|
class SynthesizerTrn(nn.Module):
|
|
"""
|
|
Synthesizer for Training
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
spec_channels,
|
|
segment_size,
|
|
inter_channels,
|
|
hidden_channels,
|
|
filter_channels,
|
|
n_heads,
|
|
n_layers,
|
|
kernel_size,
|
|
p_dropout,
|
|
resblock,
|
|
resblock_kernel_sizes,
|
|
resblock_dilation_sizes,
|
|
upsample_rates,
|
|
upsample_initial_channel,
|
|
upsample_kernel_sizes,
|
|
n_speakers=0,
|
|
gin_channels=0,
|
|
use_sdp=True,
|
|
semantic_frame_rate=None,
|
|
freeze_quantizer=None,
|
|
**kwargs
|
|
):
|
|
super().__init__()
|
|
self.spec_channels = spec_channels
|
|
self.inter_channels = inter_channels
|
|
self.hidden_channels = hidden_channels
|
|
self.filter_channels = filter_channels
|
|
self.n_heads = n_heads
|
|
self.n_layers = n_layers
|
|
self.kernel_size = kernel_size
|
|
self.p_dropout = p_dropout
|
|
self.resblock = resblock
|
|
self.resblock_kernel_sizes = resblock_kernel_sizes
|
|
self.resblock_dilation_sizes = resblock_dilation_sizes
|
|
self.upsample_rates = upsample_rates
|
|
self.upsample_initial_channel = upsample_initial_channel
|
|
self.upsample_kernel_sizes = upsample_kernel_sizes
|
|
self.segment_size = segment_size
|
|
self.n_speakers = n_speakers
|
|
self.gin_channels = gin_channels
|
|
|
|
self.use_sdp = use_sdp
|
|
self.enc_p = TextEncoder(
|
|
inter_channels,
|
|
hidden_channels,
|
|
filter_channels,
|
|
n_heads,
|
|
n_layers,
|
|
kernel_size,
|
|
p_dropout,
|
|
)
|
|
self.dec = Generator(
|
|
inter_channels,
|
|
resblock,
|
|
resblock_kernel_sizes,
|
|
resblock_dilation_sizes,
|
|
upsample_rates,
|
|
upsample_initial_channel,
|
|
upsample_kernel_sizes,
|
|
gin_channels=gin_channels,
|
|
)
|
|
self.enc_q = PosteriorEncoder(
|
|
spec_channels,
|
|
inter_channels,
|
|
hidden_channels,
|
|
5,
|
|
1,
|
|
16,
|
|
gin_channels=gin_channels,
|
|
)
|
|
self.flow = ResidualCouplingBlock(
|
|
inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels
|
|
)
|
|
|
|
self.ref_enc = modules.MelStyleEncoder(
|
|
spec_channels, style_vector_dim=gin_channels
|
|
)
|
|
|
|
ssl_dim = 768
|
|
assert semantic_frame_rate in ["25hz", "50hz"]
|
|
self.semantic_frame_rate = semantic_frame_rate
|
|
if semantic_frame_rate == "25hz":
|
|
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 2, stride=2)
|
|
else:
|
|
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 1, stride=1)
|
|
|
|
self.quantizer = ResidualVectorQuantizer(dimension=ssl_dim, n_q=1, bins=1024)
|
|
self.freeze_quantizer = freeze_quantizer
|
|
# if freeze_quantizer:
|
|
# self.ssl_proj.requires_grad_(False)
|
|
# self.quantizer.requires_grad_(False)
|
|
#self.quantizer.eval()
|
|
# self.enc_p.text_embedding.requires_grad_(False)
|
|
# self.enc_p.encoder_text.requires_grad_(False)
|
|
# self.enc_p.mrte.requires_grad_(False)
|
|
|
|
def forward(self, ssl, y, y_lengths, text, text_lengths):
|
|
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(
|
|
y.dtype
|
|
)
|
|
ge = self.ref_enc(y * y_mask, y_mask)
|
|
|
|
with autocast(enabled=False):
|
|
maybe_no_grad = torch.no_grad() if self.freeze_quantizer else contextlib.nullcontext()
|
|
with maybe_no_grad:
|
|
if self.freeze_quantizer:
|
|
self.ssl_proj.eval()
|
|
self.quantizer.eval()
|
|
ssl = self.ssl_proj(ssl)
|
|
quantized, codes, commit_loss, quantized_list = self.quantizer(
|
|
ssl, layers=[0]
|
|
)
|
|
|
|
if self.semantic_frame_rate == "25hz":
|
|
quantized = F.interpolate(
|
|
quantized, size=int(quantized.shape[-1] * 2), mode="nearest"
|
|
)
|
|
|
|
x, m_p, logs_p, y_mask = self.enc_p(
|
|
quantized, y_lengths, text, text_lengths, ge
|
|
)
|
|
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=ge)
|
|
z_p = self.flow(z, y_mask, g=ge)
|
|
|
|
z_slice, ids_slice = commons.rand_slice_segments(
|
|
z, y_lengths, self.segment_size
|
|
)
|
|
o = self.dec(z_slice, g=ge)
|
|
return (
|
|
o,
|
|
commit_loss,
|
|
ids_slice,
|
|
y_mask,
|
|
y_mask,
|
|
(z, z_p, m_p, logs_p, m_q, logs_q),
|
|
quantized,
|
|
)
|
|
|
|
def infer(self, ssl, y, y_lengths, text, text_lengths, test=None, noise_scale=0.5):
|
|
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(
|
|
y.dtype
|
|
)
|
|
ge = self.ref_enc(y * y_mask, y_mask)
|
|
|
|
ssl = self.ssl_proj(ssl)
|
|
quantized, codes, commit_loss, _ = self.quantizer(ssl, layers=[0])
|
|
if self.semantic_frame_rate == "25hz":
|
|
quantized = F.interpolate(
|
|
quantized, size=int(quantized.shape[-1] * 2), mode="nearest"
|
|
)
|
|
|
|
x, m_p, logs_p, y_mask = self.enc_p(
|
|
quantized, y_lengths, text, text_lengths, ge, test=test
|
|
)
|
|
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
|
|
|
z = self.flow(z_p, y_mask, g=ge, reverse=True)
|
|
|
|
o = self.dec((z * y_mask)[:, :, :], g=ge)
|
|
return o, y_mask, (z, z_p, m_p, logs_p)
|
|
|
|
@torch.no_grad()
|
|
def decode(self, codes, text, refer, noise_scale=0.5,speed=1):
|
|
ge = None
|
|
if refer is not None:
|
|
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
|
|
refer_mask = torch.unsqueeze(
|
|
commons.sequence_mask(refer_lengths, refer.size(2)), 1
|
|
).to(refer.dtype)
|
|
ge = self.ref_enc(refer * refer_mask, refer_mask)
|
|
|
|
y_lengths = torch.LongTensor([codes.size(2) * 2]).to(codes.device)
|
|
text_lengths = torch.LongTensor([text.size(-1)]).to(text.device)
|
|
|
|
quantized = self.quantizer.decode(codes)
|
|
if self.semantic_frame_rate == "25hz":
|
|
quantized = F.interpolate(
|
|
quantized, size=int(quantized.shape[-1] * 2), mode="nearest"
|
|
)
|
|
x, m_p, logs_p, y_mask = self.enc_p(
|
|
quantized, y_lengths, text, text_lengths, ge,speed
|
|
)
|
|
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
|
|
|
z = self.flow(z_p, y_mask, g=ge, reverse=True)
|
|
|
|
o = self.dec((z * y_mask)[:, :, :], g=ge)
|
|
return o
|
|
|
|
def extract_latent(self, x):
|
|
ssl = self.ssl_proj(x)
|
|
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
|
|
return codes.transpose(0, 1)
|