309 lines
14 KiB
Python

# This code is modified from https://github.com/ZFTurbo/
import os
import warnings
import subprocess
import librosa
import numpy as np
import soundfile as sf
import torch
import torch.nn as nn
import yaml
from tqdm import tqdm
warnings.filterwarnings("ignore")
class Roformer_Loader:
def get_config(self, config_path):
with open(config_path, "r", encoding="utf-8") as f:
# use fullloader to load tag !!python/tuple, code can be improved
config = yaml.load(f, Loader=yaml.FullLoader)
return config
def get_default_config(self):
default_config = None
if self.model_type == "bs_roformer":
# Use model_bs_roformer_ep_368_sdr_12.9628.yaml and model_bs_roformer_ep_317_sdr_12.9755.yaml as default configuration files
# Other BS_Roformer models may not be compatible
# fmt: off
default_config = {
"audio": {"chunk_size": 352800, "sample_rate": 44100},
"model": {
"dim": 512,
"depth": 12,
"stereo": True,
"num_stems": 1,
"time_transformer_depth": 1,
"freq_transformer_depth": 1,
"linear_transformer_depth": 0,
"freqs_per_bands": (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 12, 12, 12, 12, 12, 12, 12, 12, 24, 24, 24, 24, 24, 24, 24, 24, 48, 48, 48, 48, 48, 48, 48, 48, 128, 129),
"dim_head": 64,
"heads": 8,
"attn_dropout": 0.1,
"ff_dropout": 0.1,
"flash_attn": True,
"dim_freqs_in": 1025,
"stft_n_fft": 2048,
"stft_hop_length": 441,
"stft_win_length": 2048,
"stft_normalized": False,
"mask_estimator_depth": 2,
"multi_stft_resolution_loss_weight": 1.0,
"multi_stft_resolutions_window_sizes": (4096, 2048, 1024, 512, 256),
"multi_stft_hop_size": 147,
"multi_stft_normalized": False,
},
"training": {"instruments": ["vocals", "other"], "target_instrument": "vocals"},
"inference": {"batch_size": 2, "num_overlap": 2},
}
# fmt: on
elif self.model_type == "mel_band_roformer":
# Use model_mel_band_roformer_ep_3005_sdr_11.4360.yaml as default configuration files
# Other Mel_Band_Roformer models may not be compatible
default_config = {
"audio": {"chunk_size": 352800, "sample_rate": 44100},
"model": {
"dim": 384,
"depth": 12,
"stereo": True,
"num_stems": 1,
"time_transformer_depth": 1,
"freq_transformer_depth": 1,
"linear_transformer_depth": 0,
"num_bands": 60,
"dim_head": 64,
"heads": 8,
"attn_dropout": 0.1,
"ff_dropout": 0.1,
"flash_attn": True,
"dim_freqs_in": 1025,
"sample_rate": 44100,
"stft_n_fft": 2048,
"stft_hop_length": 441,
"stft_win_length": 2048,
"stft_normalized": False,
"mask_estimator_depth": 2,
"multi_stft_resolution_loss_weight": 1.0,
"multi_stft_resolutions_window_sizes": (4096, 2048, 1024, 512, 256),
"multi_stft_hop_size": 147,
"multi_stft_normalized": False,
},
"training": {"instruments": ["vocals", "other"], "target_instrument": "vocals"},
"inference": {"batch_size": 2, "num_overlap": 2},
}
return default_config
def get_model_from_config(self):
if self.model_type == "bs_roformer":
from bs_roformer.bs_roformer import BSRoformer
model = BSRoformer(**dict(self.config["model"]))
elif self.model_type == "mel_band_roformer":
from bs_roformer.mel_band_roformer import MelBandRoformer
model = MelBandRoformer(**dict(self.config["model"]))
else:
print("Error: Unknown model: {}".format(self.model_type))
model = None
return model
def demix_track(self, model, mix, device):
C = self.config["audio"]["chunk_size"] # chunk_size
N = self.config["inference"]["num_overlap"]
fade_size = C // 10
step = int(C // N)
border = C - step
batch_size = self.config["inference"]["batch_size"]
length_init = mix.shape[-1]
progress_bar = tqdm(total=length_init // step + 1, desc="Processing", leave=False)
# Do pad from the beginning and end to account floating window results better
if length_init > 2 * border and (border > 0):
mix = nn.functional.pad(mix, (border, border), mode="reflect")
# Prepare windows arrays (do 1 time for speed up). This trick repairs click problems on the edges of segment
window_size = C
fadein = torch.linspace(0, 1, fade_size)
fadeout = torch.linspace(1, 0, fade_size)
window_start = torch.ones(window_size)
window_middle = torch.ones(window_size)
window_finish = torch.ones(window_size)
window_start[-fade_size:] *= fadeout # First audio chunk, no fadein
window_finish[:fade_size] *= fadein # Last audio chunk, no fadeout
window_middle[-fade_size:] *= fadeout
window_middle[:fade_size] *= fadein
with torch.amp.autocast("cuda"):
with torch.inference_mode():
if self.config["training"]["target_instrument"] is None:
req_shape = (len(self.config["training"]["instruments"]),) + tuple(mix.shape)
else:
req_shape = (1,) + tuple(mix.shape)
result = torch.zeros(req_shape, dtype=torch.float32)
counter = torch.zeros(req_shape, dtype=torch.float32)
i = 0
batch_data = []
batch_locations = []
while i < mix.shape[1]:
part = mix[:, i : i + C].to(device)
length = part.shape[-1]
if length < C:
if length > C // 2 + 1:
part = nn.functional.pad(input=part, pad=(0, C - length), mode="reflect")
else:
part = nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode="constant", value=0)
if self.is_half:
part = part.half()
batch_data.append(part)
batch_locations.append((i, length))
i += step
progress_bGPT_SoVITS.AR.update(1)
if len(batch_data) >= batch_size or (i >= mix.shape[1]):
arr = torch.stack(batch_data, dim=0)
# print(23333333,arr.dtype)
x = model(arr)
window = window_middle
if i - step == 0: # First audio chunk, no fadein
window = window_start
elif i >= mix.shape[1]: # Last audio chunk, no fadeout
window = window_finish
for j in range(len(batch_locations)):
start, l = batch_locations[j]
result[..., start : start + l] += x[j][..., :l].cpu() * window[..., :l]
counter[..., start : start + l] += window[..., :l]
batch_data = []
batch_locations = []
estimated_sources = result / counter
estimated_sources = estimated_sources.cpu().numpy()
np.nan_to_num(estimated_sources, copy=False, nan=0.0)
if length_init > 2 * border and (border > 0):
# Remove pad
estimated_sources = estimated_sources[..., border:-border]
progress_bGPT_SoVITS.AR.close()
if self.config["training"]["target_instrument"] is None:
return {k: v for k, v in zip(self.config["training"]["instruments"], estimated_sources)}
else:
return {k: v for k, v in zip([self.config["training"]["target_instrument"]], estimated_sources)}
def run_folder(self, input, vocal_root, others_root, format):
self.model.eval()
path = input
os.makedirs(vocal_root, exist_ok=True)
os.makedirs(others_root, exist_ok=True)
file_base_name = os.path.splitext(os.path.basename(path))[0]
sample_rate = 44100
if "sample_rate" in self.config["audio"]:
sample_rate = self.config["audio"]["sample_rate"]
try:
mix, sr = librosa.load(path, sr=sample_rate, mono=False)
except Exception as e:
print("Can read track: {}".format(path))
print("Error message: {}".format(str(e)))
return
# in case if model only supports mono tracks
isstereo = self.config["model"].get("stereo", True)
if not isstereo and len(mix.shape) != 1:
mix = np.mean(mix, axis=0) # if more than 2 channels, take mean
print("Warning: Track has more than 1 channels, but model is mono, taking mean of all channels.")
mix_orig = mix.copy()
mixture = torch.tensor(mix, dtype=torch.float32)
res = self.demix_track(self.model, mixture, self.device)
if self.config["training"]["target_instrument"] is not None:
# if target instrument is specified, save target instrument as vocal and other instruments as others
# other instruments are caculated by subtracting target instrument from mixture
target_instrument = self.config["training"]["target_instrument"]
other_instruments = [i for i in self.config["training"]["instruments"] if i != target_instrument]
other = mix_orig - res[target_instrument] # caculate other instruments
path_vocal = "{}/{}_{}.wav".format(vocal_root, file_base_name, target_instrument)
path_other = "{}/{}_{}.wav".format(others_root, file_base_name, other_instruments[0])
self.save_audio(path_vocal, res[target_instrument].T, sr, format)
self.save_audio(path_other, other.T, sr, format)
else:
# if target instrument is not specified, save the first instrument as vocal and the rest as others
vocal_inst = self.config["training"]["instruments"][0]
path_vocal = "{}/{}_{}.wav".format(vocal_root, file_base_name, vocal_inst)
self.save_audio(path_vocal, res[vocal_inst].T, sr, format)
for other in self.config["training"]["instruments"][1:]: # save other instruments
path_other = "{}/{}_{}.wav".format(others_root, file_base_name, other)
self.save_audio(path_other, res[other].T, sr, format)
def save_audio(self, path, data, sr, format):
# input path should be endwith '.wav'
if format in ["wav", "flac"]:
if format == "flac":
path = path[:-3] + "flac"
sf.write(path, data, sr)
else:
sf.write(path, data, sr)
subprocess.run(
["ffmpeg", "-i", path, "-vn", path[:-3] + format, "-q:a", "2", "-y"],
check=True,
)
try:
os.remove(path)
except:
pass
def __init__(self, model_path, config_path, device, is_half):
self.device = device
self.is_half = is_half
self.model_type = None
self.config = None
# get model_type, first try:
if "bs_roformer" in model_path.lower() or "bsroformer" in model_path.lower():
self.model_type = "bs_roformer"
elif "mel_band_roformer" in model_path.lower() or "melbandroformer" in model_path.lower():
self.model_type = "mel_band_roformer"
if not os.path.exists(config_path):
if self.model_type is None:
# if model_type is still None, raise an error
raise ValueError(
"Error: Unknown model type. If you are using a model without a configuration file, Ensure that your model name includes 'bs_roformer', 'bsroformer', 'mel_band_roformer', or 'melbandroformer'. Otherwise, you can manually place the model configuration file into 'tools/uvr5/uvr5w_weights' and ensure that the configuration file is named as '<model_name>.yaml' then try it again."
)
self.config = self.get_default_config()
else:
# if there is a configuration file
self.config = self.get_config(config_path)
if self.model_type is None:
# if model_type is still None, second try, get model_type from the configuration file
if "freqs_per_bands" in self.config["model"]:
# if freqs_per_bands in config, it's a bs_roformer model
self.model_type = "bs_roformer"
else:
# else it's a mel_band_roformer model
self.model_type = "mel_band_roformer"
print("Detected model type: {}".format(self.model_type))
model = self.get_model_from_config()
state_dict = torch.load(model_path, map_location="cpu")
model.load_state_dict(state_dict)
if is_half == False:
self.model = model.to(device)
else:
self.model = model.half().to(device)
def _path_audio_(self, input, others_root, vocal_root, format, is_hp3=False):
self.run_folder(input, vocal_root, others_root, format)