mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-06 03:57:44 +08:00
232 lines
7.9 KiB
Python
232 lines
7.9 KiB
Python
|
|
import os, sys
|
|
|
|
from tqdm import tqdm
|
|
now_dir = os.getcwd()
|
|
sys.path.append(now_dir)
|
|
|
|
import re
|
|
import torch
|
|
import LangSegment
|
|
|
|
from typing import Dict, List, Tuple
|
|
from text.cleaner import clean_text
|
|
from text import cleaned_text_to_sequence
|
|
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
|
from TTS_infer_pack.text_segmentation_method import split_big_text, splits, get_method as get_seg_method
|
|
|
|
from tools.i18n.i18n import I18nAuto
|
|
|
|
i18n = I18nAuto()
|
|
punctuation = set(['!', '?', '…', ',', '.', '-'," "])
|
|
|
|
def get_first(text:str) -> str:
|
|
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
|
|
text = re.split(pattern, text)[0].strip()
|
|
return text
|
|
|
|
def merge_short_text_in_array(texts:str, threshold:int) -> list:
|
|
if (len(texts)) < 2:
|
|
return texts
|
|
result = []
|
|
text = ""
|
|
for ele in texts:
|
|
text += ele
|
|
if len(text) >= threshold:
|
|
result.append(text)
|
|
text = ""
|
|
if (len(text) > 0):
|
|
if len(result) == 0:
|
|
result.append(text)
|
|
else:
|
|
result[len(result) - 1] += text
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TextPreprocessor:
|
|
def __init__(self, bert_model:AutoModelForMaskedLM,
|
|
tokenizer:AutoTokenizer, device:torch.device):
|
|
self.bert_model = bert_model
|
|
self.tokenizer = tokenizer
|
|
self.device = device
|
|
|
|
def preprocess(self, text:str, lang:str, text_split_method:str)->List[Dict]:
|
|
print(i18n("############ 切分文本 ############"))
|
|
texts = self.replace_consecutive_punctuation(texts)
|
|
texts = self.pre_seg_text(text, lang, text_split_method)
|
|
result = []
|
|
print(i18n("############ 提取文本Bert特征 ############"))
|
|
for text in tqdm(texts):
|
|
phones, bert_features, norm_text = self.segment_and_extract_feature_for_text(text, lang)
|
|
if phones is None:
|
|
continue
|
|
res={
|
|
"phones": phones,
|
|
"bert_features": bert_features,
|
|
"norm_text": norm_text,
|
|
}
|
|
result.append(res)
|
|
return result
|
|
|
|
def pre_seg_text(self, text:str, lang:str, text_split_method:str):
|
|
text = text.strip("\n")
|
|
if (text[0] not in splits and len(get_first(text)) < 4):
|
|
text = "。" + text if lang != "en" else "." + text
|
|
print(i18n("实际输入的目标文本:"))
|
|
print(text)
|
|
|
|
seg_method = get_seg_method(text_split_method)
|
|
text = seg_method(text)
|
|
|
|
while "\n\n" in text:
|
|
text = text.replace("\n\n", "\n")
|
|
|
|
_texts = text.split("\n")
|
|
_texts = self.process_text(_texts)
|
|
_texts = merge_short_text_in_array(_texts, 5)
|
|
texts = []
|
|
|
|
|
|
for text in _texts:
|
|
# 解决输入目标文本的空行导致报错的问题
|
|
if (len(text.strip()) == 0):
|
|
continue
|
|
if (text[-1] not in splits): text += "。" if lang != "en" else "."
|
|
|
|
# 解决句子过长导致Bert报错的问题
|
|
if (len(text) > 510):
|
|
texts.extend(split_big_text(text))
|
|
else:
|
|
texts.append(text)
|
|
|
|
print(i18n("实际输入的目标文本(切句后):"))
|
|
print(texts)
|
|
return texts
|
|
|
|
def segment_and_extract_feature_for_text(self, texts:list, language:str)->Tuple[list, torch.Tensor, str]:
|
|
textlist, langlist = self.seg_text(texts, language)
|
|
if len(textlist) == 0:
|
|
return None, None, None
|
|
|
|
phones, bert_features, norm_text = self.extract_bert_feature(textlist, langlist)
|
|
return phones, bert_features, norm_text
|
|
|
|
|
|
def seg_text(self, text:str, language:str)->Tuple[list, list]:
|
|
|
|
textlist=[]
|
|
langlist=[]
|
|
if language in ["auto", "zh", "ja"]:
|
|
LangSegment.setfilters(["zh","ja","en","ko"])
|
|
for tmp in LangSegment.getTexts(text):
|
|
if tmp["text"] == "":
|
|
continue
|
|
if tmp["lang"] == "ko":
|
|
langlist.append("zh")
|
|
elif tmp["lang"] == "en":
|
|
langlist.append("en")
|
|
else:
|
|
# 因无法区别中日文汉字,以用户输入为准
|
|
langlist.append(language if language!="auto" else tmp["lang"])
|
|
textlist.append(tmp["text"])
|
|
elif language == "en":
|
|
LangSegment.setfilters(["en"])
|
|
formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text))
|
|
while " " in formattext:
|
|
formattext = formattext.replace(" ", " ")
|
|
if formattext != "":
|
|
textlist.append(formattext)
|
|
langlist.append("en")
|
|
|
|
elif language in ["all_zh","all_ja"]:
|
|
|
|
formattext = text
|
|
while " " in formattext:
|
|
formattext = formattext.replace(" ", " ")
|
|
language = language.replace("all_","")
|
|
if text == "":
|
|
return [],[]
|
|
textlist.append(formattext)
|
|
langlist.append(language)
|
|
|
|
else:
|
|
raise ValueError(f"language {language} not supported")
|
|
|
|
return textlist, langlist
|
|
|
|
|
|
def extract_bert_feature(self, textlist:list, langlist:list):
|
|
phones_list = []
|
|
bert_feature_list = []
|
|
norm_text_list = []
|
|
for i in range(len(textlist)):
|
|
lang = langlist[i]
|
|
phones, word2ph, norm_text = self.clean_text_inf(textlist[i], lang)
|
|
_bert_feature = self.get_bert_inf(phones, word2ph, norm_text, lang)
|
|
# phones_list.append(phones)
|
|
phones_list.extend(phones)
|
|
norm_text_list.append(norm_text)
|
|
bert_feature_list.append(_bert_feature)
|
|
bert_feature = torch.cat(bert_feature_list, dim=1)
|
|
# phones = sum(phones_list, [])
|
|
norm_text = ''.join(norm_text_list)
|
|
return phones_list, bert_feature, norm_text
|
|
|
|
|
|
def get_bert_feature(self, text:str, word2ph:list)->torch.Tensor:
|
|
with torch.no_grad():
|
|
inputs = self.tokenizer(text, return_tensors="pt")
|
|
for i in inputs:
|
|
inputs[i] = inputs[i].to(self.device)
|
|
res = self.bert_model(**inputs, output_hidden_states=True)
|
|
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
|
assert len(word2ph) == len(text)
|
|
phone_level_feature = []
|
|
for i in range(len(word2ph)):
|
|
repeat_feature = res[i].repeat(word2ph[i], 1)
|
|
phone_level_feature.append(repeat_feature)
|
|
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
|
return phone_level_feature.T
|
|
|
|
def clean_text_inf(self, text:str, language:str):
|
|
phones, word2ph, norm_text = clean_text(text, language)
|
|
phones = cleaned_text_to_sequence(phones)
|
|
return phones, word2ph, norm_text
|
|
|
|
def get_bert_inf(self, phones:list, word2ph:list, norm_text:str, language:str):
|
|
language=language.replace("all_","")
|
|
if language == "zh":
|
|
feature = self.get_bert_feature(norm_text, word2ph).to(self.device)
|
|
else:
|
|
feature = torch.zeros(
|
|
(1024, len(phones)),
|
|
dtype=torch.float32,
|
|
).to(self.device)
|
|
|
|
return feature
|
|
|
|
def process_text(self,texts):
|
|
_text=[]
|
|
if all(text in [None, " ", "\n",""] for text in texts):
|
|
raise ValueError(i18n("请输入有效文本"))
|
|
for text in texts:
|
|
if text in [None, " ", ""]:
|
|
pass
|
|
else:
|
|
_text.append(text)
|
|
return _text
|
|
|
|
|
|
def replace_consecutive_punctuation(self,text):
|
|
punctuations = ''.join(re.escape(p) for p in punctuation)
|
|
pattern = f'([{punctuations}])([{punctuations}])+'
|
|
result = re.sub(pattern, r'\1', text)
|
|
return result
|
|
|
|
|
|
|