2025-09-06 22:58:58 +08:00

30 lines
1.1 KiB
Python

import torch
from GPT_SoVITS.eres2net import kaldi
from GPT_SoVITS.eres2net.ERes2NetV2 import ERes2NetV2
sv_path = "GPT_SoVITS/pretrained_models/sv/pretrained_eres2netv2w24s4ep4.ckpt"
class SV:
def __init__(self, device, is_half):
pretrained_state = torch.load(sv_path, map_location="cpu")
embedding_model = ERes2NetV2(baseWidth=24, scale=4, expansion=4)
embedding_model.load_state_dict(pretrained_state)
embedding_model.eval()
self.embedding_model = embedding_model
if is_half is False:
self.embedding_model = self.embedding_model.to(device)
else:
self.embedding_model = self.embedding_model.half().to(device)
self.is_half = is_half
def compute_embedding(self, wav):
if self.is_half is True:
wav = wav.half()
feat = torch.stack(
[kaldi.fbank(wav0.unsqueeze(0), num_mel_bins=80, sample_frequency=16000, dither=0) for wav0 in wav]
)
sv_emb = self.embedding_model.forward3(feat)
return sv_emb