mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-09-29 08:49:59 +08:00
100 lines
2.6 KiB
Python
100 lines
2.6 KiB
Python
from __future__ import annotations
|
|
|
|
from typing import cast
|
|
|
|
import mlx.core as mx
|
|
|
|
from ..structs_mlx import KVCache, KVCacheQ
|
|
from ..t2s_model_abc import (
|
|
AttentionABC,
|
|
KVCacheHND,
|
|
T2SDecoderABC,
|
|
TransformerBlockABC,
|
|
TransformerDecoderABC,
|
|
)
|
|
|
|
Array = mx.array
|
|
|
|
|
|
class Attention(AttentionABC):
|
|
def __init__(self, n_head: int, hidden_dim: int, max_seq_length: int):
|
|
super().__init__(n_head, hidden_dim, max_seq_length)
|
|
self.kc_class = KVCacheHND
|
|
|
|
def __call__(self, x: Array, input_pos: Array, kv_cache: KVCache | KVCacheQ, cache_idx: Array, attn_mask: Array):
|
|
bsz, seqlen, _ = cast(tuple[int, ...], x.shape)
|
|
|
|
q, k, v = self.in_proj(x).split(3, axis=-1)
|
|
|
|
q, k, v = map(lambda x: x.reshape(bsz, seqlen, self.n_head, self.head_dim), (q, k, v))
|
|
|
|
q, k, v = map(lambda x: x.swapaxes(1, 2), (q, k, v))
|
|
|
|
kv_cache = self.kc_class.update_cache(input_pos, k, v, kv_cache, cache_idx)
|
|
assert len(kv_cache) == 2
|
|
|
|
k, v = kv_cache
|
|
|
|
attn = mx.fast.scaled_dot_product_attention(q, k, v, scale=self.scale, mask=attn_mask)
|
|
|
|
attn = attn.swapaxes(1, 2).reshape(bsz, seqlen, self.hidden_dim)
|
|
|
|
attn = self.out_proj(attn)
|
|
|
|
return attn
|
|
|
|
|
|
class TransformerBlock(TransformerBlockABC):
|
|
def __init__(self, n_head: int, ffn_dim: int, hidden_dim: int, max_seq_length: int) -> None:
|
|
super().__init__(n_head, ffn_dim, hidden_dim, max_seq_length)
|
|
|
|
self.attention = Attention(n_head, hidden_dim, max_seq_length)
|
|
|
|
|
|
class TransformerDecoder(TransformerDecoderABC):
|
|
def __init__(
|
|
self,
|
|
hidden_dim: int,
|
|
n_layer: int,
|
|
n_head: int,
|
|
ffn_dim: int,
|
|
vocab_size: int,
|
|
max_seq_length: int,
|
|
max_batch_size: int,
|
|
) -> None:
|
|
super().__init__(
|
|
hidden_dim,
|
|
n_layer,
|
|
n_head,
|
|
ffn_dim,
|
|
vocab_size,
|
|
max_seq_length,
|
|
max_batch_size,
|
|
)
|
|
|
|
self.layers = [
|
|
TransformerBlock(
|
|
n_head,
|
|
ffn_dim,
|
|
hidden_dim,
|
|
max_seq_length,
|
|
)
|
|
for _ in range(n_layer)
|
|
]
|
|
|
|
|
|
class T2SDecoder(T2SDecoderABC):
|
|
def __init__(
|
|
self,
|
|
config: dict,
|
|
max_seq_length: int = 2000,
|
|
max_batch_size: int = 10,
|
|
) -> None:
|
|
super().__init__(config, max_seq_length, max_batch_size)
|
|
|
|
self.h = TransformerDecoder(
|
|
self.hidden_dim, self.n_layer, self.n_head, self.ffn_dim, self.vocab_size, max_seq_length, max_batch_size
|
|
)
|
|
|
|
self.kv_class = KVCacheHND
|