GPT-SoVITS/tools/damo_asr/WhisperASR.py
Shadow 26c4709d33
Add files via upload
python WhisperASR.py -i <input> -o <out_put> -f <file_name.list> -l <language>
2024-02-05 18:09:57 +08:00

42 lines
1.9 KiB
Python

import os
import argparse
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
from glob import glob
from faster_whisper import WhisperModel
def main(input_folder, output_folder, output_filename, language):
model = WhisperModel("large-v3", device="cuda", compute_type="float16")
output_file = os.path.join(output_folder, output_filename)
if not os.path.exists(output_folder):
os.makedirs(output_folder)
with open(output_file, 'w', encoding='utf-8') as f:
for file in glob(os.path.join(input_folder, '**/*.wav'), recursive=True):
segments, _ = model.transcribe(file, beam_size=10, vad_filter=True,
vad_parameters=dict(min_silence_duration_ms=700), language=language)
segments = list(segments)
filename = os.path.basename(file).replace('.wav', '')
directory = os.path.dirname(file)
result_line = f"{file}|{language.upper()}|{segments[0].text}\n"
f.write(result_line)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("-i", "--input_folder", type=str, required=True,
help="Path to the folder containing WAV files.")
parser.add_argument("-o", "--output_folder", type=str, required=True, help="Output folder to store transcriptions.")
parser.add_argument("-f", "--output_filename", type=str, default="transcriptions.txt", help="Name of the output text file.")
parser.add_argument("-l", "--language", type=str, default='zh', choices=['zh', 'en', ...],
help="Language of the audio files.")
cmd = parser.parse_args()
input_folder = cmd.input_folder
output_folder = cmd.output_folder
output_filename = cmd.output_filename
language = cmd.language
main(input_folder, output_folder, output_filename, language)