KamioRinn 237526a7e6
Fix invalid path (#2114)
* Fix korean invalid path

* Fix japanese invalid path

* Fix langsegmenter invalid path
2025-02-26 23:37:19 +08:00

186 lines
6.7 KiB
Python

import logging
import re
# jieba静音
import jieba
jieba.setLogLevel(logging.CRITICAL)
# 更改fast_langdetect大模型位置
from pathlib import Path
import fast_langdetect
fast_langdetect.ft_detect.infer.CACHE_DIRECTORY = Path(__file__).parent.parent.parent / "pretrained_models" / "fast_langdetect"
# 防止win下无法读取模型
import os
from typing import Optional
def load_fasttext_model(
model_path: Path,
download_url: Optional[str] = None,
proxy: Optional[str] = None,
):
"""
Load a FastText model, downloading it if necessary.
:param model_path: Path to the FastText model file
:param download_url: URL to download the model from
:param proxy: Proxy URL for downloading the model
:return: FastText model
:raises DetectError: If model loading fails
"""
if all([
fast_langdetect.ft_detect.infer.VERIFY_FASTTEXT_LARGE_MODEL,
model_path.exists(),
model_path.name == fast_langdetect.ft_detect.infer.FASTTEXT_LARGE_MODEL_NAME,
]):
if not fast_langdetect.ft_detect.infer.verify_md5(model_path, fast_langdetect.ft_detect.infer.VERIFY_FASTTEXT_LARGE_MODEL):
fast_langdetect.ft_detect.infer.logger.warning(
f"fast-langdetect: MD5 hash verification failed for {model_path}, "
f"please check the integrity of the downloaded file from {fast_langdetect.ft_detect.infer.FASTTEXT_LARGE_MODEL_URL}. "
"\n This may seriously reduce the prediction accuracy. "
"If you want to ignore this, please set `fast_langdetect.ft_detect.infer.VERIFY_FASTTEXT_LARGE_MODEL = None` "
)
if not model_path.exists():
if download_url:
fast_langdetect.ft_detect.infer.download_model(download_url, model_path, proxy)
if not model_path.exists():
raise fast_langdetect.ft_detect.infer.DetectError(f"FastText model file not found at {model_path}")
try:
# Load FastText model
if (re.match(r'^[A-Za-z0-9_/\\:.]*$', str(model_path))):
model = fast_langdetect.ft_detect.infer.fasttext.load_model(str(model_path))
else:
python_dir = os.getcwd()
if (str(model_path)[:len(python_dir)].upper() == python_dir.upper()):
model = fast_langdetect.ft_detect.infer.fasttext.load_model(os.path.relpath(model_path, python_dir))
else:
import tempfile
import shutil
with tempfile.NamedTemporaryFile(delete=False) as tmpfile:
shutil.copyfile(model_path, tmpfile.name)
model = fast_langdetect.ft_detect.infer.fasttext.load_model(tmpfile.name)
os.unlink(tmpfile.name)
return model
except Exception as e:
fast_langdetect.ft_detect.infer.logger.warning(f"fast-langdetect:Failed to load FastText model from {model_path}: {e}")
raise fast_langdetect.ft_detect.infer.DetectError(f"Failed to load FastText model: {e}")
if os.name == 'nt':
fast_langdetect.ft_detect.infer.load_fasttext_model = load_fasttext_model
from split_lang import LangSplitter
def full_en(text):
pattern = r'^[A-Za-z0-9\s\u0020-\u007E\u2000-\u206F\u3000-\u303F\uFF00-\uFFEF]+$'
return bool(re.match(pattern, text))
def split_jako(tag_lang,item):
if tag_lang == "ja":
pattern = r"([\u3041-\u3096\u3099\u309A\u30A1-\u30FA\u30FC]+(?:[0-9、-〜。!?.!?… ]+[\u3041-\u3096\u3099\u309A\u30A1-\u30FA\u30FC]*)*)"
else:
pattern = r"([\u1100-\u11FF\u3130-\u318F\uAC00-\uD7AF]+(?:[0-9、-〜。!?.!?… ]+[\u1100-\u11FF\u3130-\u318F\uAC00-\uD7AF]*)*)"
lang_list: list[dict] = []
tag = 0
for match in re.finditer(pattern, item['text']):
if match.start() > tag:
lang_list.append({'lang':item['lang'],'text':item['text'][tag:match.start()]})
tag = match.end()
lang_list.append({'lang':tag_lang,'text':item['text'][match.start():match.end()]})
if tag < len(item['text']):
lang_list.append({'lang':item['lang'],'text':item['text'][tag:len(item['text'])]})
return lang_list
def merge_lang(lang_list, item):
if lang_list and item['lang'] == lang_list[-1]['lang']:
lang_list[-1]['text'] += item['text']
else:
lang_list.append(item)
return lang_list
class LangSegmenter():
# 默认过滤器, 基于gsv目前四种语言
DEFAULT_LANG_MAP = {
"zh": "zh",
"yue": "zh", # 粤语
"wuu": "zh", # 吴语
"zh-cn": "zh",
"zh-tw": "x", # 繁体设置为x
"ko": "ko",
"ja": "ja",
"en": "en",
}
def getTexts(text):
lang_splitter = LangSplitter(lang_map=LangSegmenter.DEFAULT_LANG_MAP)
substr = lang_splitter.split_by_lang(text=text)
lang_list: list[dict] = []
for _, item in enumerate(substr):
dict_item = {'lang':item.lang,'text':item.text}
# 处理短英文被识别为其他语言的问题
if full_en(dict_item['text']):
dict_item['lang'] = 'en'
lang_list = merge_lang(lang_list,dict_item)
continue
# 处理非日语夹日文的问题(不包含CJK)
ja_list: list[dict] = []
if dict_item['lang'] != 'ja':
ja_list = split_jako('ja',dict_item)
if not ja_list:
ja_list.append(dict_item)
# 处理非韩语夹韩语的问题(不包含CJK)
ko_list: list[dict] = []
temp_list: list[dict] = []
for _, ko_item in enumerate(ja_list):
if ko_item["lang"] != 'ko':
ko_list = split_jako('ko',ko_item)
if ko_list:
temp_list.extend(ko_list)
else:
temp_list.append(ko_item)
# 未存在非日韩文夹日韩文
if len(temp_list) == 1:
# 跳过未知语言
if dict_item['lang'] == 'x':
continue
else:
lang_list = merge_lang(lang_list,dict_item)
continue
# 存在非日韩文夹日韩文
for _, temp_item in enumerate(temp_list):
# 待观察是否会出现带英文或语言为x的中日英韩文
if temp_item['lang'] == 'x':
continue
lang_list = merge_lang(lang_list,temp_item)
return lang_list
if __name__ == "__main__":
text = "MyGO?,你也喜欢まいご吗?"
print(LangSegmenter.getTexts(text))
text = "ねえ、知ってる?最近、僕は天文学を勉強してるんだ。君の瞳が星空みたいにキラキラしてるからさ。"
print(LangSegmenter.getTexts(text))