mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 04:22:46 +08:00
321 lines
12 KiB
Python
321 lines
12 KiB
Python
import argparse
|
||
import os
|
||
import signal
|
||
import sys
|
||
from time import time as ttime
|
||
import torch
|
||
import librosa
|
||
import soundfile as sf
|
||
from fastapi import FastAPI, Request, HTTPException
|
||
from fastapi.responses import StreamingResponse
|
||
import uvicorn
|
||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||
import numpy as np
|
||
from feature_extractor import cnhubert
|
||
from io import BytesIO
|
||
from module.models import SynthesizerTrn
|
||
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
||
from text import cleaned_text_to_sequence
|
||
from text.cleaner import clean_text
|
||
from module.mel_processing import spectrogram_torch
|
||
from my_utils import load_audio
|
||
from config import python_exec, infer_device, is_half, api_port
|
||
|
||
DEFAULT_PORT = api_port
|
||
DEFAULT_CNHUBERT = "GPT_SoVITS/pretrained_models/chinese-hubert-base"
|
||
DEFAULT_BERT = "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
|
||
DEFAULT_HALF = is_half
|
||
|
||
DEFAULT_GPT = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
||
DEFAULT_SOVITS = "GPT_SoVITS/pretrained_models/s2G488k.pth"
|
||
|
||
# AVAILABLE_COMPUTE = "cuda" if torch.cuda.is_available() else "cpu"
|
||
|
||
parser = argparse.ArgumentParser(description="GPT-SoVITS api")
|
||
|
||
parser.add_argument("-g", "--gpt_path", type=str, default="", help="GPT模型路径")
|
||
parser.add_argument("-s", "--sovits_path", type=str, default="", help="SoVITS模型路径")
|
||
|
||
parser.add_argument("-dr", "--default_refer_path", type=str, default="",
|
||
help="默认参考音频路径, 请求缺少参考音频时调用")
|
||
parser.add_argument("-dt", "--default_refer_text", type=str, default="", help="默认参考音频文本")
|
||
parser.add_argument("-dl", "--default_refer_language", type=str, default="", help="默认参考音频语种")
|
||
|
||
parser.add_argument("-d", "--device", type=str, default=infer_device, help="cuda / cpu")
|
||
parser.add_argument("-p", "--port", type=int, default=DEFAULT_PORT, help="default: 9880")
|
||
parser.add_argument("-a", "--bind_addr", type=str, default="127.0.0.1", help="default: 127.0.0.1")
|
||
parser.add_argument("-hp", "--half_precision", action='store_true', default=False)
|
||
|
||
parser.add_argument("-hb", "--hubert_path", type=str, default=DEFAULT_CNHUBERT)
|
||
parser.add_argument("-b", "--bert_path", type=str, default=DEFAULT_BERT)
|
||
|
||
args = parser.parse_args()
|
||
|
||
gpt_path = args.gpt_path
|
||
sovits_path = args.sovits_path
|
||
|
||
default_refer_path = args.default_refer_path
|
||
default_refer_text = args.default_refer_text
|
||
default_refer_language = args.default_refer_language
|
||
has_preset = False
|
||
|
||
device = args.device
|
||
port = args.port
|
||
host = args.bind_addr
|
||
is_half = args.half_precision
|
||
|
||
cnhubert_base_path = args.hubert_path
|
||
bert_path = args.bert_path
|
||
|
||
if gpt_path == "":
|
||
gpt_path = DEFAULT_GPT
|
||
print("[WARN] 未指定GPT模型路径")
|
||
if sovits_path == "":
|
||
sovits_path = DEFAULT_SOVITS
|
||
print("[WARN] 未指定SoVITS模型路径")
|
||
|
||
if default_refer_path == "" or default_refer_text == "" or default_refer_language == "":
|
||
default_refer_path, default_refer_text, default_refer_language = "", "", ""
|
||
print("[INFO] 未指定默认参考音频")
|
||
has_preset = False
|
||
else:
|
||
print(f"[INFO] 默认参考音频路径: {default_refer_path}")
|
||
print(f"[INFO] 默认参考音频文本: {default_refer_text}")
|
||
print(f"[INFO] 默认参考音频语种: {default_refer_language}")
|
||
has_preset = True
|
||
|
||
cnhubert.cnhubert_base_path = cnhubert_base_path
|
||
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
||
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
|
||
# bert_model = AutoModelForSequenceClassification.from_pretrained(bert_path, config=bert_path+"/config.json")
|
||
if (is_half == True):
|
||
bert_model = bert_model.half().to(device)
|
||
else:
|
||
bert_model = bert_model.to(device)
|
||
|
||
|
||
# bert_model=bert_model.to(device)
|
||
def get_bert_feature(text, word2ph):
|
||
with torch.no_grad():
|
||
inputs = tokenizer(text, return_tensors="pt")
|
||
for i in inputs:
|
||
inputs[i] = inputs[i].to(device) #####输入是long不用管精度问题,精度随bert_model
|
||
res = bert_model(**inputs, output_hidden_states=True)
|
||
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
||
assert len(word2ph) == len(text)
|
||
phone_level_feature = []
|
||
for i in range(len(word2ph)):
|
||
repeat_feature = res[i].repeat(word2ph[i], 1)
|
||
phone_level_feature.append(repeat_feature)
|
||
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||
# if(is_half==True):phone_level_feature=phone_level_feature.half()
|
||
return phone_level_feature.T
|
||
|
||
|
||
n_semantic = 1024
|
||
dict_s2 = torch.load(sovits_path, map_location="cpu")
|
||
hps = dict_s2["config"]
|
||
|
||
|
||
class DictToAttrRecursive:
|
||
def __init__(self, input_dict):
|
||
for key, value in input_dict.items():
|
||
if isinstance(value, dict):
|
||
# 如果值是字典,递归调用构造函数
|
||
setattr(self, key, DictToAttrRecursive(value))
|
||
else:
|
||
setattr(self, key, value)
|
||
|
||
|
||
hps = DictToAttrRecursive(hps)
|
||
hps.model.semantic_frame_rate = "25hz"
|
||
dict_s1 = torch.load(gpt_path, map_location="cpu")
|
||
config = dict_s1["config"]
|
||
ssl_model = cnhubert.get_model()
|
||
if is_half:
|
||
ssl_model = ssl_model.half().to(device)
|
||
else:
|
||
ssl_model = ssl_model.to(device)
|
||
|
||
vq_model = SynthesizerTrn(
|
||
hps.data.filter_length // 2 + 1,
|
||
hps.train.segment_size // hps.data.hop_length,
|
||
n_speakers=hps.data.n_speakers,
|
||
**hps.model)
|
||
if is_half:
|
||
vq_model = vq_model.half().to(device)
|
||
else:
|
||
vq_model = vq_model.to(device)
|
||
vq_model.eval()
|
||
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
|
||
hz = 50
|
||
max_sec = config['data']['max_sec']
|
||
t2s_model = Text2SemanticLightningModule(config, "ojbk", is_train=False)
|
||
t2s_model.load_state_dict(dict_s1["weight"])
|
||
if is_half:
|
||
t2s_model = t2s_model.half()
|
||
t2s_model = t2s_model.to(device)
|
||
t2s_model.eval()
|
||
total = sum([param.nelement() for param in t2s_model.parameters()])
|
||
print("Number of parameter: %.2fM" % (total / 1e6))
|
||
|
||
|
||
def get_spepc(hps, filename):
|
||
audio = load_audio(filename, int(hps.data.sampling_rate))
|
||
audio = torch.FloatTensor(audio)
|
||
audio_norm = audio
|
||
audio_norm = audio_norm.unsqueeze(0)
|
||
spec = spectrogram_torch(audio_norm, hps.data.filter_length, hps.data.sampling_rate, hps.data.hop_length,
|
||
hps.data.win_length, center=False)
|
||
return spec
|
||
|
||
|
||
dict_language = {
|
||
"中文": "zh",
|
||
"英文": "en",
|
||
"日文": "ja",
|
||
"ZH": "zh",
|
||
"EN": "en",
|
||
"JA": "ja",
|
||
"zh": "zh",
|
||
"en": "en",
|
||
"ja": "ja"
|
||
}
|
||
|
||
|
||
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language):
|
||
t0 = ttime()
|
||
prompt_text = prompt_text.strip("\n")
|
||
prompt_language, text = prompt_language, text.strip("\n")
|
||
with torch.no_grad():
|
||
wav16k, sr = librosa.load(ref_wav_path, sr=16000) # 派蒙
|
||
wav16k = torch.from_numpy(wav16k)
|
||
if (is_half == True):
|
||
wav16k = wav16k.half().to(device)
|
||
else:
|
||
wav16k = wav16k.to(device)
|
||
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2) # .float()
|
||
codes = vq_model.extract_latent(ssl_content)
|
||
prompt_semantic = codes[0, 0]
|
||
t1 = ttime()
|
||
prompt_language = dict_language[prompt_language]
|
||
text_language = dict_language[text_language]
|
||
phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language)
|
||
phones1 = cleaned_text_to_sequence(phones1)
|
||
texts = text.split("\n")
|
||
audio_opt = []
|
||
zero_wav = np.zeros(int(hps.data.sampling_rate * 0.3), dtype=np.float16 if is_half == True else np.float32)
|
||
for text in texts:
|
||
phones2, word2ph2, norm_text2 = clean_text(text, text_language)
|
||
phones2 = cleaned_text_to_sequence(phones2)
|
||
if (prompt_language == "zh"):
|
||
bert1 = get_bert_feature(norm_text1, word2ph1).to(device)
|
||
else:
|
||
bert1 = torch.zeros((1024, len(phones1)), dtype=torch.float16 if is_half == True else torch.float32).to(
|
||
device)
|
||
if (text_language == "zh"):
|
||
bert2 = get_bert_feature(norm_text2, word2ph2).to(device)
|
||
else:
|
||
bert2 = torch.zeros((1024, len(phones2))).to(bert1)
|
||
bert = torch.cat([bert1, bert2], 1)
|
||
|
||
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
|
||
bert = bert.to(device).unsqueeze(0)
|
||
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
||
prompt = prompt_semantic.unsqueeze(0).to(device)
|
||
t2 = ttime()
|
||
with torch.no_grad():
|
||
# pred_semantic = t2s_model.model.infer(
|
||
pred_semantic, idx = t2s_model.model.infer_panel(
|
||
all_phoneme_ids,
|
||
all_phoneme_len,
|
||
prompt,
|
||
bert,
|
||
# prompt_phone_len=ph_offset,
|
||
top_k=config['inference']['top_k'],
|
||
early_stop_num=hz * max_sec)
|
||
t3 = ttime()
|
||
# print(pred_semantic.shape,idx)
|
||
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0) # .unsqueeze(0)#mq要多unsqueeze一次
|
||
refer = get_spepc(hps, ref_wav_path) # .to(device)
|
||
if (is_half == True):
|
||
refer = refer.half().to(device)
|
||
else:
|
||
refer = refer.to(device)
|
||
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
|
||
audio = \
|
||
vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0),
|
||
refer).detach().cpu().numpy()[
|
||
0, 0] ###试试重建不带上prompt部分
|
||
audio_opt.append(audio)
|
||
audio_opt.append(zero_wav)
|
||
t4 = ttime()
|
||
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
||
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16)
|
||
|
||
|
||
def handle(command, refer_wav_path, prompt_text, prompt_language, text, text_language):
|
||
if command == "/restart":
|
||
os.execl(python_exec, python_exec, *sys.argv)
|
||
elif command == "/exit":
|
||
os.kill(os.getpid(), signal.SIGTERM)
|
||
exit(0)
|
||
|
||
if (
|
||
refer_wav_path == "" or refer_wav_path is None
|
||
or prompt_text == "" or prompt_text is None
|
||
or prompt_language == "" or prompt_language is None
|
||
):
|
||
refer_wav_path, prompt_text, prompt_language = (
|
||
default_refer_path,
|
||
default_refer_text,
|
||
default_refer_language,
|
||
)
|
||
if not has_preset:
|
||
raise HTTPException(status_code=400, detail="未指定参考音频且接口无预设")
|
||
|
||
with torch.no_grad():
|
||
gen = get_tts_wav(
|
||
refer_wav_path, prompt_text, prompt_language, text, text_language
|
||
)
|
||
sampling_rate, audio_data = next(gen)
|
||
|
||
wav = BytesIO()
|
||
sf.write(wav, audio_data, sampling_rate, format="wav")
|
||
wav.seek(0)
|
||
|
||
torch.cuda.empty_cache()
|
||
return StreamingResponse(wav, media_type="audio/wav")
|
||
|
||
|
||
app = FastAPI()
|
||
|
||
|
||
@app.post("/")
|
||
async def tts_endpoint(request: Request):
|
||
json_post_raw = await request.json()
|
||
return handle(
|
||
json_post_raw.get("command"),
|
||
json_post_raw.get("refer_wav_path"),
|
||
json_post_raw.get("prompt_text"),
|
||
json_post_raw.get("prompt_language"),
|
||
json_post_raw.get("text"),
|
||
json_post_raw.get("text_language"),
|
||
)
|
||
|
||
|
||
@app.get("/")
|
||
async def tts_endpoint(
|
||
command: str = None,
|
||
refer_wav_path: str = None,
|
||
prompt_text: str = None,
|
||
prompt_language: str = None,
|
||
text: str = None,
|
||
text_language: str = None,
|
||
):
|
||
return handle(command, refer_wav_path, prompt_text, prompt_language, text, text_language)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
uvicorn.run(app, host=host, port=port, workers=1)
|