GPT-SoVITS/inference.py

102 lines
4.2 KiB
Python

import torch
import sounddevice as sd
import time
from queue import Queue
from threading import Thread
import os
class TTS:
def __init__(self):
# Replace with your checkpoints and reference audio here
# Note: Using a venv may require updating the default paths provided here
self.bert_checkpoint = "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
self.cnhuhbert_checkpoint = "GPT_SoVITS/pretrained_models/chinese-hubert-base"
# self.t2s_checkpoint = "GPT_SoVITS/pretrained_models/ayaka/Ayaka-e15.ckpt"
# self.vits_checkpoint = "GPT_SoVITS/pretrained_models/ayaka/Ayaka_e3_s1848_l32.pth"
self.t2s_checkpoint = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt"
self.vits_checkpoint = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth"
self.ref_audio = "audio/ayaka/ref_audio/10_audio.wav"
from GPT_SoVITS.TTS_infer_pack.TTS import TTS, TTS_Config
self.config = {
"custom": {
"bert_base_path": self.bert_checkpoint,
"cnhuhbert_base_path": self.cnhuhbert_checkpoint,
"device": "cuda" if torch.cuda.is_available() else "cpu",
"is_half": True,
"t2s_weights_path": self.t2s_checkpoint,
"vits_weights_path": self.vits_checkpoint,
"version": "v3"
}
}
self.tts = TTS(TTS_Config(self.config))
self.audio_queue = Queue()
self.generating_audio = False
def audio_stream(self, start_time):
with sd.OutputStream(samplerate=32000, channels=1, dtype="int16") as stream:
while True:
sr, audio_data = self.audio_queue.get()
if audio_data is None:
print(f"Stream Thread Done ({time.time() - start_time:.2f}s)")
break
print((sr, audio_data))
stream.write(audio_data)
self.generating_audio = False
def synthesize(self, text, start_time, generating_text=False):
if not self.generating_audio:
Thread(target=self.audio_stream, args=(start_time,)).start()
self.generating_audio = True
path = "audio/ayaka/aux_ref_audio"
aux_ref_audios = [f"{path}/{file_name}" for file_name in os.listdir(path)]
args = {
"text": text,
"text_lang": "en",
"ref_audio_path": self.ref_audio,
"aux_ref_audio_paths": aux_ref_audios,
"prompt_text": "Don't worry. Now that I've experienced the event once already, I won't be easily frightened. I'll see you later. Have a lovely chat with your friend.",
"prompt_lang": "en",
"temperature": 0.8,
"top_k": 50,
"top_p": 0.9,
"parallel_infer": True,
"sample_steps": 32,
"super_sampling": True,
"speed_factor": 1,
"fragment_interval": 0.2
# "stream_output": True,
# "max_chunk_size": 20,
}
if text:
print(f"Synthesis Start: {time.time() - start_time}")
generator = self.tts.run(args)
while True:
try:
audio_chunk = next(generator)
self.audio_queue.put(audio_chunk)
except StopIteration:
break
if not generating_text:
self.audio_queue.put((None, None))
print(f"Synthesis End ({time.time() - start_time:.2f}s)")
# Usage
tts = TTS()
"""
Time is only for debugging purposes. If not needed, feel free to remove.
Since this TTS model was built to be paired with LLM text streaming, we use a generating_text bool
this bool signifies if we are receiving the last chunk of streamed text (hence if we are generating anymore).
"""
tts.synthesize("One day, a fierce storm rolled in, bringing heavy rain and strong winds that threatened to destroy the wheat crops.", time.time(), False)
while tts.generating_audio:
time.sleep(0.1)
tts.synthesize("One day, a fierce storm rolled in, bringing heavy rain and strong winds that threatened to destroy the wheat crops.", time.time(), False)