mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-06 03:57:44 +08:00
298 lines
10 KiB
Python
298 lines
10 KiB
Python
import os
|
||
import glob
|
||
import sys
|
||
import argparse
|
||
import logging
|
||
import json
|
||
import subprocess
|
||
import traceback
|
||
|
||
import librosa
|
||
import numpy as np
|
||
from scipy.io.wavfile import read
|
||
import torch
|
||
import logging
|
||
logging.getLogger('numba').setLevel(logging.ERROR)
|
||
logging.getLogger('matplotlib').setLevel(logging.ERROR)
|
||
|
||
MATPLOTLIB_FLAG = False
|
||
|
||
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
||
logger = logging
|
||
|
||
|
||
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
|
||
assert os.path.isfile(checkpoint_path)
|
||
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
||
iteration = checkpoint_dict['iteration']
|
||
learning_rate = checkpoint_dict['learning_rate']
|
||
if optimizer is not None and not skip_optimizer and checkpoint_dict['optimizer'] is not None:
|
||
optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
||
saved_state_dict = checkpoint_dict['model']
|
||
if hasattr(model, 'module'):
|
||
state_dict = model.module.state_dict()
|
||
else:
|
||
state_dict = model.state_dict()
|
||
new_state_dict = {}
|
||
for k, v in state_dict.items():
|
||
try:
|
||
# assert "quantizer" not in k
|
||
# print("load", k)
|
||
new_state_dict[k] = saved_state_dict[k]
|
||
assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape)
|
||
except:
|
||
traceback.print_exc()
|
||
print("error, %s is not in the checkpoint" % k)#shape不对也会,比如text_embedding当cleaner修改时
|
||
new_state_dict[k] = v
|
||
if hasattr(model, 'module'):
|
||
model.module.load_state_dict(new_state_dict)
|
||
else:
|
||
model.load_state_dict(new_state_dict)
|
||
print("load ")
|
||
logger.info("Loaded checkpoint '{}' (iteration {})".format(
|
||
checkpoint_path, iteration))
|
||
return model, optimizer, learning_rate, iteration
|
||
|
||
|
||
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
||
logger.info("Saving model and optimizer state at iteration {} to {}".format(
|
||
iteration, checkpoint_path))
|
||
if hasattr(model, 'module'):
|
||
state_dict = model.module.state_dict()
|
||
else:
|
||
state_dict = model.state_dict()
|
||
torch.save({'model': state_dict,
|
||
'iteration': iteration,
|
||
'optimizer': optimizer.state_dict(),
|
||
'learning_rate': learning_rate}, checkpoint_path)
|
||
|
||
|
||
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
|
||
for k, v in scalars.items():
|
||
writer.add_scalar(k, v, global_step)
|
||
for k, v in histograms.items():
|
||
writer.add_histogram(k, v, global_step)
|
||
for k, v in images.items():
|
||
writer.add_image(k, v, global_step, dataformats='HWC')
|
||
for k, v in audios.items():
|
||
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
||
|
||
|
||
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
||
f_list = glob.glob(os.path.join(dir_path, regex))
|
||
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
||
x = f_list[-1]
|
||
print(x)
|
||
return x
|
||
|
||
|
||
def plot_spectrogram_to_numpy(spectrogram):
|
||
global MATPLOTLIB_FLAG
|
||
if not MATPLOTLIB_FLAG:
|
||
import matplotlib
|
||
matplotlib.use("Agg")
|
||
MATPLOTLIB_FLAG = True
|
||
mpl_logger = logging.getLogger('matplotlib')
|
||
mpl_logger.setLevel(logging.WARNING)
|
||
import matplotlib.pylab as plt
|
||
import numpy as np
|
||
|
||
fig, ax = plt.subplots(figsize=(10, 2))
|
||
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
||
interpolation='none')
|
||
plt.colorbar(im, ax=ax)
|
||
plt.xlabel("Frames")
|
||
plt.ylabel("Channels")
|
||
plt.tight_layout()
|
||
|
||
fig.canvas.draw()
|
||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||
plt.close()
|
||
return data
|
||
|
||
|
||
def plot_alignment_to_numpy(alignment, info=None):
|
||
global MATPLOTLIB_FLAG
|
||
if not MATPLOTLIB_FLAG:
|
||
import matplotlib
|
||
matplotlib.use("Agg")
|
||
MATPLOTLIB_FLAG = True
|
||
mpl_logger = logging.getLogger('matplotlib')
|
||
mpl_logger.setLevel(logging.WARNING)
|
||
import matplotlib.pylab as plt
|
||
import numpy as np
|
||
|
||
fig, ax = plt.subplots(figsize=(6, 4))
|
||
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
|
||
interpolation='none')
|
||
fig.colorbar(im, ax=ax)
|
||
xlabel = 'Decoder timestep'
|
||
if info is not None:
|
||
xlabel += '\n\n' + info
|
||
plt.xlabel(xlabel)
|
||
plt.ylabel('Encoder timestep')
|
||
plt.tight_layout()
|
||
|
||
fig.canvas.draw()
|
||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||
plt.close()
|
||
return data
|
||
|
||
|
||
def load_wav_to_torch(full_path):
|
||
data, sampling_rate = librosa.load(full_path, sr=None)
|
||
return torch.FloatTensor(data), sampling_rate
|
||
|
||
|
||
def load_filepaths_and_text(filename, split="|"):
|
||
with open(filename, encoding='utf-8') as f:
|
||
filepaths_and_text = [line.strip().split(split) for line in f]
|
||
return filepaths_and_text
|
||
|
||
|
||
def get_hparams(init=True, stage=1):
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument('-c', '--config', type=str, default="./configs/s2.json",help='JSON file for configuration')
|
||
parser.add_argument('-p', '--pretrain', type=str, required=False,default=None,help='pretrain dir')
|
||
parser.add_argument('-rs', '--resume_step', type=int, required=False,default=None,help='resume step')
|
||
# parser.add_argument('-e', '--exp_dir', type=str, required=False,default=None,help='experiment directory')
|
||
# parser.add_argument('-g', '--pretrained_s2G', type=str, required=False,default=None,help='pretrained sovits gererator weights')
|
||
# parser.add_argument('-d', '--pretrained_s2D', type=str, required=False,default=None,help='pretrained sovits discriminator weights')
|
||
|
||
args = parser.parse_args()
|
||
|
||
config_path = args.config
|
||
with open(config_path, "r") as f:
|
||
data = f.read()
|
||
config = json.loads(data)
|
||
|
||
hparams = HParams(**config)
|
||
hparams.pretrain = args.pretrain
|
||
hparams.resume_step = args.resume_step
|
||
# hparams.data.exp_dir = args.exp_dir
|
||
if stage ==1:
|
||
model_dir = hparams.s1_ckpt_dir
|
||
else:
|
||
model_dir = hparams.s2_ckpt_dir
|
||
config_save_path = os.path.join(model_dir, "config.json")
|
||
|
||
if not os.path.exists(model_dir):
|
||
os.makedirs(model_dir)
|
||
|
||
with open(config_save_path, "w") as f:
|
||
f.write(data)
|
||
return hparams
|
||
|
||
|
||
|
||
def clean_checkpoints(path_to_models='logs/44k/', n_ckpts_to_keep=2, sort_by_time=True):
|
||
"""Freeing up space by deleting saved ckpts
|
||
|
||
Arguments:
|
||
path_to_models -- Path to the model directory
|
||
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
|
||
sort_by_time -- True -> chronologically delete ckpts
|
||
False -> lexicographically delete ckpts
|
||
"""
|
||
import re
|
||
ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
|
||
name_key = (lambda _f: int(re.compile('._(\d+)\.pth').match(_f).group(1)))
|
||
time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f)))
|
||
sort_key = time_key if sort_by_time else name_key
|
||
x_sorted = lambda _x: sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith('_0.pth')],
|
||
key=sort_key)
|
||
to_del = [os.path.join(path_to_models, fn) for fn in
|
||
(x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])]
|
||
del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}")
|
||
del_routine = lambda x: [os.remove(x), del_info(x)]
|
||
rs = [del_routine(fn) for fn in to_del]
|
||
|
||
def get_hparams_from_dir(model_dir):
|
||
config_save_path = os.path.join(model_dir, "config.json")
|
||
with open(config_save_path, "r") as f:
|
||
data = f.read()
|
||
config = json.loads(data)
|
||
|
||
hparams = HParams(**config)
|
||
hparams.model_dir = model_dir
|
||
return hparams
|
||
|
||
|
||
def get_hparams_from_file(config_path):
|
||
with open(config_path, "r") as f:
|
||
data = f.read()
|
||
config = json.loads(data)
|
||
|
||
hparams = HParams(**config)
|
||
return hparams
|
||
|
||
def check_git_hash(model_dir):
|
||
source_dir = os.path.dirname(os.path.realpath(__file__))
|
||
if not os.path.exists(os.path.join(source_dir, ".git")):
|
||
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
||
source_dir
|
||
))
|
||
return
|
||
|
||
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
||
|
||
path = os.path.join(model_dir, "githash")
|
||
if os.path.exists(path):
|
||
saved_hash = open(path).read()
|
||
if saved_hash != cur_hash:
|
||
logger.warn("git hash values are different. {}(saved) != {}(current)".format(
|
||
saved_hash[:8], cur_hash[:8]))
|
||
else:
|
||
open(path, "w").write(cur_hash)
|
||
|
||
|
||
def get_logger(model_dir, filename="train.log"):
|
||
global logger
|
||
logger = logging.getLogger(os.path.basename(model_dir))
|
||
logger.setLevel(logging.DEBUG)
|
||
|
||
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
||
if not os.path.exists(model_dir):
|
||
os.makedirs(model_dir)
|
||
h = logging.FileHandler(os.path.join(model_dir, filename))
|
||
h.setLevel(logging.DEBUG)
|
||
h.setFormatter(formatter)
|
||
logger.addHandler(h)
|
||
return logger
|
||
|
||
|
||
class HParams():
|
||
def __init__(self, **kwargs):
|
||
for k, v in kwargs.items():
|
||
if type(v) == dict:
|
||
v = HParams(**v)
|
||
self[k] = v
|
||
|
||
def keys(self):
|
||
return self.__dict__.keys()
|
||
|
||
def items(self):
|
||
return self.__dict__.items()
|
||
|
||
def values(self):
|
||
return self.__dict__.values()
|
||
|
||
def __len__(self):
|
||
return len(self.__dict__)
|
||
|
||
def __getitem__(self, key):
|
||
return getattr(self, key)
|
||
|
||
def __setitem__(self, key, value):
|
||
return setattr(self, key, value)
|
||
|
||
def __contains__(self, key):
|
||
return key in self.__dict__
|
||
|
||
def __repr__(self):
|
||
return self.__dict__.__repr__()
|
||
|
||
if __name__ == '__main__':
|
||
print(load_wav_to_torch('/home/fish/wenetspeech/dataset_vq/Y0000022499_wHFSeHEx9CM/S00261.flac')) |