GPT-SoVITS/GPT_SoVITS/inference_cli.py
2025-08-11 10:51:43 +08:00

155 lines
5.3 KiB
Python

import argparse
import os
import soundfile as sf
from tools.i18n.i18n import I18nAuto
from GPT_SoVITS.inference_webui import change_gpt_weights, change_sovits_weights, get_tts_wav
i18n = I18nAuto()
LANGUAGE_CHOICES = ["中文", "英文", "日文", "韩文", "粤语"]
MIXED_LANGUAGE_CHOICES = ["中英混合", "日英混合", "粤英混合", "韩英混合", "多语种混合"]
def synthesize(
GPT_model_path,
SoVITS_model_path,
ref_audio_path,
ref_text,
ref_language,
target_text,
target_language,
output_path,
):
# Change model weights
change_gpt_weights(gpt_path=GPT_model_path)
change_sovits_weights(sovits_path=SoVITS_model_path)
# Synthesize audio
synthesis_result = get_tts_wav(
ref_wav_path=ref_audio_path,
prompt_text=ref_text,
prompt_language=i18n(ref_language),
text=target_text,
text_language=i18n(target_language),
top_p=1,
temperature=1,
)
result_list = list(synthesis_result)
if result_list:
last_sampling_rate, last_audio_data = result_list[-1]
# Create output directory if it doesn't exist
os.makedirs(output_path, exist_ok=True)
output_wav_path = os.path.join(output_path, "output.wav")
sf.write(output_wav_path, last_audio_data, last_sampling_rate)
print(f"Audio saved to {output_wav_path}")
def build_parser():
parser = argparse.ArgumentParser(description="GPT-SoVITS Command Line Tool")
# input settings
parser.add_argument("--ref_audio", required=True, help="Path to the reference audio file")
parser.add_argument("--ref_text", required=True, help="Transcript of the reference audio")
parser.add_argument("--ref_language", required=True,
choices=LANGUAGE_CHOICES, help="Language of the reference audio")
# output settings
parser.add_argument("--target_text", required=True, help="Text to be synthesized")
parser.add_argument("--target_language", required=True,
choices=LANGUAGE_CHOICES+MIXED_LANGUAGE_CHOICES,
help="Language of the target text")
parser.add_argument("--output_path", required=True, help="Path to the output directory")
sub = parser.add_subparsers(dest="mode", required=True)
# Mode 1: provide model paths directly
p_paths = sub.add_parser("paths", help="Use explicit model file paths")
p_paths.add_argument("--gpt_path", required=True, help="Path to the GPT model file")
p_paths.add_argument("--sovits_path", required=True, help="Path to the SoVITS model file")
# Mode 2: select by experiment/version
p_sel = sub.add_parser("select", help="Select models by experiment/version")
p_sel.add_argument("--exp_name", required=True, help="Experiment name")
available_gpt_versions = ["v1", "v2", "v2Pro", "v2ProPlus", "v3", "v4"]
p_sel.add_argument("--gpt_version", required=True, choices=available_gpt_versions, help="Version of the GPT model")
available_sovits_versions = ["v1", "v2", "v2Pro", "v2ProPlus", "v3", "v4"]
p_sel.add_argument("--sovits_version", required=True, choices=available_sovits_versions, help="Version of the SoVITS model")
p_sel.add_argument("--gpt_epoch", type=int, help="Epoch of the GPT model")
p_sel.add_argument("--sovits_epoch", type=int, help="Epoch of the SoVITS model")
return parser
def get_model_path(args)->argparse.Namespace:
"""
Get the model path from exp_name, version and epoch
Args:
args: argparse.Namespace
Returns:
args: argparse.Namespace
"""
exist_gpt_path = []
exist_sovits_path = []
def _get_model_dir(model_type, version):
if version == "v1":
return f"{model_type}_weights"
else:
return f"{model_type}_weights_{version}"
# get all the model paths with the same exp_name
for files in os.listdir(_get_model_dir("GPT", args.gpt_version)):
if args.exp_name in files and files.endswith(".ckpt"):
exist_gpt_path.append(os.path.join(_get_model_dir("GPT", args.gpt_version), files))
for files in os.listdir(_get_model_dir("SoVITS", args.sovits_version)):
if args.exp_name in files and files.endswith(".pth"):
exist_sovits_path.append(os.path.join(_get_model_dir("SoVITS", args.sovits_version), files))
# get the largest epoch if not specified
if args.gpt_epoch:
args.gpt_path = [i for i in exist_gpt_path if f"e{args.gpt_epoch}" in i]
else:
args.gpt_path = sorted(exist_gpt_path)[-1]
if args.sovits_epoch:
args.sovits_path = [i for i in exist_sovits_path if f"e{args.sovits_epoch}" in i]
else:
args.sovits_path = sorted(exist_sovits_path)[-1]
if not args.gpt_path or not args.sovits_path:
raise ValueError("No model found")
return args
def main():
parser = build_parser()
args = parser.parse_args()
print(args)
if args.mode == "select":
args = get_model_path(args)
args.target_text = args.target_text.replace("'", "").replace('"', "")
synthesize(
args.gpt_path,
args.sovits_path,
args.ref_audio,
args.ref_text,
args.ref_language,
args.target_text,
args.target_language,
args.output_path,
)
if __name__ == "__main__":
main()