mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 12:38:35 +08:00
213 lines
9.9 KiB
Python
213 lines
9.9 KiB
Python
import os
|
||
import traceback,gradio as gr
|
||
import logging
|
||
from tools.i18n.i18n import I18nAuto
|
||
from tools.my_utils import clean_path
|
||
i18n = I18nAuto()
|
||
|
||
logger = logging.getLogger(__name__)
|
||
import librosa,ffmpeg
|
||
import soundfile as sf
|
||
import torch
|
||
import sys
|
||
from mdxnet import MDXNetDereverb
|
||
from vr import AudioPre, AudioPreDeEcho
|
||
from bsroformer import Roformer_Loader
|
||
|
||
try:
|
||
import gradio.analytics as analytics
|
||
analytics.version_check = lambda:None
|
||
except:...
|
||
|
||
weight_uvr5_root = "tools/uvr5/uvr5_weights"
|
||
uvr5_names = []
|
||
for name in os.listdir(weight_uvr5_root):
|
||
if name.endswith(".pth") or name.endswith(".ckpt") or "onnx" in name:
|
||
uvr5_names.append(name.replace(".pth", "").replace(".ckpt", ""))
|
||
|
||
device=sys.argv[1]
|
||
is_half=eval(sys.argv[2])
|
||
webui_port_uvr5=int(sys.argv[3])
|
||
is_share=eval(sys.argv[4])
|
||
|
||
def html_left(text, label='p'):
|
||
return f"""<div style="text-align: left; margin: 0; padding: 0;">
|
||
<{label} style="margin: 0; padding: 0;">{text}</{label}>
|
||
</div>"""
|
||
|
||
def html_center(text, label='p'):
|
||
return f"""<div style="text-align: center; margin: 100; padding: 50;">
|
||
<{label} style="margin: 0; padding: 0;">{text}</{label}>
|
||
</div>"""
|
||
|
||
def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format0):
|
||
infos = []
|
||
try:
|
||
inp_root = clean_path(inp_root)
|
||
save_root_vocal = clean_path(save_root_vocal)
|
||
save_root_ins = clean_path(save_root_ins)
|
||
is_hp3 = "HP3" in model_name
|
||
if model_name == "onnx_dereverb_By_FoxJoy":
|
||
pre_fun = MDXNetDereverb(15)
|
||
elif "roformer" in model_name.lower():
|
||
func = Roformer_Loader
|
||
pre_fun = func(
|
||
model_path = os.path.join(weight_uvr5_root, model_name + ".ckpt"),
|
||
config_path = os.path.join(weight_uvr5_root, model_name + ".yaml"),
|
||
device = device,
|
||
is_half=is_half
|
||
)
|
||
if not os.path.exists(os.path.join(weight_uvr5_root, model_name + ".yaml")):
|
||
infos.append("Warning: You are using a model without a configuration file. The program will automatically use the default configuration file. However, the default configuration file cannot guarantee that all models will run successfully. You can manually place the model configuration file into 'tools/uvr5/uvr5w_weights' and ensure that the configuration file is named as '<model_name>.yaml' then try it again. (For example, the configuration file corresponding to the model 'bs_roformer_ep_368_sdr_12.9628.ckpt' should be 'bs_roformer_ep_368_sdr_12.9628.yaml'.) Or you can just ignore this warning.")
|
||
yield "\n".join(infos)
|
||
else:
|
||
func = AudioPre if "DeEcho" not in model_name else AudioPreDeEcho
|
||
pre_fun = func(
|
||
agg=int(agg),
|
||
model_path=os.path.join(weight_uvr5_root, model_name + ".pth"),
|
||
device=device,
|
||
is_half=is_half,
|
||
)
|
||
if inp_root != "":
|
||
paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)]
|
||
else:
|
||
paths = [path.name for path in paths]
|
||
for path in paths:
|
||
inp_path = os.path.join(inp_root, path)
|
||
if(os.path.isfile(inp_path)==False):continue
|
||
need_reformat = 1
|
||
done = 0
|
||
try:
|
||
info = ffmpeg.probe(inp_path, cmd="ffprobe")
|
||
if (
|
||
info["streams"][0]["channels"] == 2
|
||
and info["streams"][0]["sample_rate"] == "44100"
|
||
):
|
||
need_reformat = 0
|
||
pre_fun._path_audio_(
|
||
inp_path, save_root_ins, save_root_vocal, format0,is_hp3
|
||
)
|
||
done = 1
|
||
except:
|
||
need_reformat = 1
|
||
traceback.print_exc()
|
||
if need_reformat == 1:
|
||
tmp_path = "%s/%s.reformatted.wav" % (
|
||
os.path.join(os.environ["TEMP"]),
|
||
os.path.basename(inp_path),
|
||
)
|
||
os.system(
|
||
f'ffmpeg -i "{inp_path}" -vn -acodec pcm_s16le -ac 2 -ar 44100 "{tmp_path}" -y'
|
||
)
|
||
inp_path = tmp_path
|
||
try:
|
||
if done == 0:
|
||
pre_fun._path_audio_(
|
||
inp_path, save_root_ins, save_root_vocal, format0,is_hp3
|
||
)
|
||
infos.append("%s->Success" % (os.path.basename(inp_path)))
|
||
yield "\n".join(infos)
|
||
except:
|
||
infos.append(
|
||
"%s->%s" % (os.path.basename(inp_path), traceback.format_exc())
|
||
)
|
||
yield "\n".join(infos)
|
||
except:
|
||
infos.append(traceback.format_exc())
|
||
yield "\n".join(infos)
|
||
finally:
|
||
try:
|
||
if model_name == "onnx_dereverb_By_FoxJoy":
|
||
del pre_fun.pred.model
|
||
del pre_fun.pred.model_
|
||
else:
|
||
del pre_fun.model
|
||
del pre_fun
|
||
except:
|
||
traceback.print_exc()
|
||
print("clean_empty_cache")
|
||
if torch.cuda.is_available():
|
||
torch.cuda.empty_cache()
|
||
yield "\n".join(infos)
|
||
|
||
with gr.Blocks(title="UVR5 WebUI") as app:
|
||
gr.Markdown(
|
||
value=
|
||
i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.") + "<br>" + i18n("如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.")
|
||
)
|
||
with gr.Group():
|
||
gr.Markdown(html_center(i18n("伴奏人声分离&去混响&去回声"),'h2'))
|
||
with gr.Group():
|
||
gr.Markdown(
|
||
value=html_left(i18n("人声伴奏分离批量处理, 使用UVR5模型。") + "<br>" + \
|
||
i18n("合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。")+ "<br>" + \
|
||
i18n("模型分为三类:") + "<br>" + \
|
||
i18n("1、保留人声:不带和声的音频选这个,对主人声保留比HP5更好。内置HP2和HP3两个模型,HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点;") + "<br>" + \
|
||
i18n("2、仅保留主人声:带和声的音频选这个,对主人声可能有削弱。内置HP5一个模型;") + "<br>" + \
|
||
i18n("3、去混响、去延迟模型(by FoxJoy):") + "<br> " + \
|
||
i18n("(1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;") + "<br> " + \
|
||
i18n("(234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底,DeReverb额外去除混响,可去除单声道混响,但是对高频重的板式混响去不干净。") + "<br>" + \
|
||
i18n("去混响/去延迟,附:") + "<br>" + \
|
||
i18n("1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍;") + "<br>" + \
|
||
i18n("2、MDX-Net-Dereverb模型挺慢的;") + "<br>" + \
|
||
i18n("3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。"),'h4')
|
||
)
|
||
with gr.Row():
|
||
with gr.Column():
|
||
model_choose = gr.Dropdown(label=i18n("模型"), choices=uvr5_names)
|
||
dir_wav_input = gr.Textbox(
|
||
label=i18n("输入待处理音频文件夹路径"),
|
||
placeholder="C:\\Users\\Desktop\\todo-songs",
|
||
)
|
||
wav_inputs = gr.File(
|
||
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
|
||
)
|
||
with gr.Column():
|
||
agg = gr.Slider(
|
||
minimum=0,
|
||
maximum=20,
|
||
step=1,
|
||
label=i18n("人声提取激进程度"),
|
||
value=10,
|
||
interactive=True,
|
||
visible=False, # 先不开放调整
|
||
)
|
||
opt_vocal_root = gr.Textbox(
|
||
label=i18n("指定输出主人声文件夹"), value="output/uvr5_opt"
|
||
)
|
||
opt_ins_root = gr.Textbox(
|
||
label=i18n("指定输出非主人声文件夹"), value="output/uvr5_opt"
|
||
)
|
||
format0 = gr.Radio(
|
||
label=i18n("导出文件格式"),
|
||
choices=["wav", "flac", "mp3", "m4a"],
|
||
value="flac",
|
||
interactive=True,
|
||
)
|
||
with gr.Column():
|
||
with gr.Row():
|
||
but2 = gr.Button(i18n("转换"), variant="primary")
|
||
with gr.Row():
|
||
vc_output4 = gr.Textbox(label=i18n("输出信息"),lines=3)
|
||
but2.click(
|
||
uvr,
|
||
[
|
||
model_choose,
|
||
dir_wav_input,
|
||
opt_vocal_root,
|
||
wav_inputs,
|
||
opt_ins_root,
|
||
agg,
|
||
format0,
|
||
],
|
||
[vc_output4],
|
||
api_name="uvr_convert",
|
||
)
|
||
app.queue().launch(#concurrency_count=511, max_size=1022
|
||
server_name="0.0.0.0",
|
||
inbrowser=True,
|
||
share=is_share,
|
||
server_port=webui_port_uvr5,
|
||
quiet=True,
|
||
)
|