mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 04:22:46 +08:00
346 lines
12 KiB
Python
346 lines
12 KiB
Python
import warnings
|
||
warnings.filterwarnings("ignore")
|
||
import utils, os
|
||
hps = utils.get_hparams(stage=2)
|
||
os.environ["CUDA_VISIBLE_DEVICES"] = hps.train.gpu_numbers.replace("-", ",")
|
||
import torch
|
||
from torch.nn import functional as F
|
||
from torch.utils.data import DataLoader
|
||
from torch.utils.tensorboard import SummaryWriter
|
||
import torch.multiprocessing as mp
|
||
import torch.distributed as dist, traceback
|
||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||
from torch.cuda.amp import autocast, GradScaler
|
||
from tqdm import tqdm
|
||
import logging, traceback
|
||
|
||
logging.getLogger("matplotlib").setLevel(logging.INFO)
|
||
logging.getLogger("h5py").setLevel(logging.INFO)
|
||
logging.getLogger("numba").setLevel(logging.INFO)
|
||
from random import randint
|
||
from module import commons
|
||
from peft import LoraConfig, PeftModel, get_peft_model
|
||
from module.data_utils import (
|
||
TextAudioSpeakerLoaderV3 as TextAudioSpeakerLoader,
|
||
TextAudioSpeakerCollateV3 as TextAudioSpeakerCollate,
|
||
DistributedBucketSampler,
|
||
)
|
||
from module.models import (
|
||
SynthesizerTrnV3 as SynthesizerTrn,
|
||
MultiPeriodDiscriminator,
|
||
)
|
||
from module.losses import generator_loss, discriminator_loss, feature_loss, kl_loss
|
||
from module.mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
||
from process_ckpt import savee
|
||
from collections import OrderedDict as od
|
||
torch.backends.cudnn.benchmark = False
|
||
torch.backends.cudnn.deterministic = False
|
||
###反正A100fp32更快,那试试tf32吧
|
||
torch.backends.cuda.matmul.allow_tf32 = True
|
||
torch.backends.cudnn.allow_tf32 = True
|
||
torch.set_float32_matmul_precision("medium") # 最低精度但最快(也就快一丁点),对于结果造成不了影响
|
||
# from config import pretrained_s2G,pretrained_s2D
|
||
global_step = 0
|
||
|
||
device = "cpu" # cuda以外的设备,等mps优化后加入
|
||
|
||
|
||
def main():
|
||
|
||
if torch.cuda.is_available():
|
||
n_gpus = torch.cuda.device_count()
|
||
else:
|
||
n_gpus = 1
|
||
os.environ["MASTER_ADDR"] = "localhost"
|
||
os.environ["MASTER_PORT"] = str(randint(20000, 55555))
|
||
|
||
mp.spawn(
|
||
run,
|
||
nprocs=n_gpus,
|
||
args=(
|
||
n_gpus,
|
||
hps,
|
||
),
|
||
)
|
||
|
||
|
||
def run(rank, n_gpus, hps):
|
||
global global_step,no_grad_names,save_root,lora_rank
|
||
if rank == 0:
|
||
logger = utils.get_logger(hps.data.exp_dir)
|
||
logger.info(hps)
|
||
# utils.check_git_hash(hps.s2_ckpt_dir)
|
||
writer = SummaryWriter(log_dir=hps.s2_ckpt_dir)
|
||
writer_eval = SummaryWriter(log_dir=os.path.join(hps.s2_ckpt_dir, "eval"))
|
||
|
||
dist.init_process_group(
|
||
backend = "gloo" if os.name == "nt" or not torch.cuda.is_available() else "nccl",
|
||
init_method="env://?use_libuv=False",
|
||
world_size=n_gpus,
|
||
rank=rank,
|
||
)
|
||
torch.manual_seed(hps.train.seed)
|
||
if torch.cuda.is_available():
|
||
torch.cuda.set_device(rank)
|
||
|
||
train_dataset = TextAudioSpeakerLoader(hps.data) ########
|
||
train_sampler = DistributedBucketSampler(
|
||
train_dataset,
|
||
hps.train.batch_size,
|
||
[
|
||
32,
|
||
300,
|
||
400,
|
||
500,
|
||
600,
|
||
700,
|
||
800,
|
||
900,
|
||
1000,
|
||
# 1100,
|
||
# 1200,
|
||
# 1300,
|
||
# 1400,
|
||
# 1500,
|
||
# 1600,
|
||
# 1700,
|
||
# 1800,
|
||
# 1900,
|
||
],
|
||
num_replicas=n_gpus,
|
||
rank=rank,
|
||
shuffle=True,
|
||
)
|
||
collate_fn = TextAudioSpeakerCollate()
|
||
train_loader = DataLoader(
|
||
train_dataset,
|
||
num_workers=6,
|
||
shuffle=False,
|
||
pin_memory=True,
|
||
collate_fn=collate_fn,
|
||
batch_sampler=train_sampler,
|
||
persistent_workers=True,
|
||
prefetch_factor=4,
|
||
)
|
||
save_root="%s/logs_s2_%s_lora_%s" % (hps.data.exp_dir,hps.model.version,hps.train.lora_rank)
|
||
os.makedirs(save_root,exist_ok=True)
|
||
lora_rank=int(hps.train.lora_rank)
|
||
lora_config = LoraConfig(
|
||
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
|
||
r=lora_rank,
|
||
lora_alpha=lora_rank,
|
||
init_lora_weights=True,
|
||
)
|
||
def get_model(hps):return SynthesizerTrn(
|
||
hps.data.filter_length // 2 + 1,
|
||
hps.train.segment_size // hps.data.hop_length,
|
||
n_speakers=hps.data.n_speakers,
|
||
**hps.model,
|
||
)
|
||
def get_optim(net_g):
|
||
return torch.optim.AdamW(
|
||
filter(lambda p: p.requires_grad, net_g.parameters()), ###默认所有层lr一致
|
||
hps.train.learning_rate,
|
||
betas=hps.train.betas,
|
||
eps=hps.train.eps,
|
||
)
|
||
def model2cuda(net_g,rank):
|
||
if torch.cuda.is_available():
|
||
net_g = DDP(net_g.cuda(rank), device_ids=[rank], find_unused_parameters=True)
|
||
else:
|
||
net_g = net_g.to(device)
|
||
return net_g
|
||
try:# 如果能加载自动resume
|
||
net_g = get_model(hps)
|
||
net_g.cfm = get_peft_model(net_g.cfm, lora_config)
|
||
net_g=model2cuda(net_g,rank)
|
||
optim_g=get_optim(net_g)
|
||
# _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g,load_opt=0)
|
||
_, _, _, epoch_str = utils.load_checkpoint(
|
||
utils.latest_checkpoint_path(save_root, "G_*.pth"),
|
||
net_g,
|
||
optim_g,
|
||
)
|
||
epoch_str+=1
|
||
global_step = (epoch_str - 1) * len(train_loader)
|
||
except: # 如果首次不能加载,加载pretrain
|
||
# traceback.print_exc()
|
||
epoch_str = 1
|
||
global_step = 0
|
||
net_g = get_model(hps)
|
||
if hps.train.pretrained_s2G != ""and hps.train.pretrained_s2G != None and os.path.exists(hps.train.pretrained_s2G):
|
||
if rank == 0:
|
||
logger.info("loaded pretrained %s" % hps.train.pretrained_s2G)
|
||
print("loaded pretrained %s" % hps.train.pretrained_s2G,
|
||
net_g.load_state_dict(
|
||
torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"],
|
||
strict=False,
|
||
)
|
||
)
|
||
net_g.cfm = get_peft_model(net_g.cfm, lora_config)
|
||
net_g=model2cuda(net_g,rank)
|
||
optim_g = get_optim(net_g)
|
||
|
||
no_grad_names=set()
|
||
for name, param in net_g.named_parameters():
|
||
if not param.requires_grad:
|
||
no_grad_names.add(name.replace("module.",""))
|
||
# print(name, "not requires_grad")
|
||
# print(no_grad_names)
|
||
# os._exit(233333)
|
||
|
||
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
|
||
optim_g, gamma=hps.train.lr_decay, last_epoch=-1
|
||
)
|
||
for _ in range(epoch_str):
|
||
scheduler_g.step()
|
||
|
||
scaler = GradScaler(enabled=hps.train.fp16_run)
|
||
|
||
net_d=optim_d=scheduler_d=None
|
||
print("start training from epoch %s"%epoch_str)
|
||
for epoch in range(epoch_str, hps.train.epochs + 1):
|
||
if rank == 0:
|
||
train_and_evaluate(
|
||
rank,
|
||
epoch,
|
||
hps,
|
||
[net_g, net_d],
|
||
[optim_g, optim_d],
|
||
[scheduler_g, scheduler_d],
|
||
scaler,
|
||
# [train_loader, eval_loader], logger, [writer, writer_eval])
|
||
[train_loader, None],
|
||
logger,
|
||
[writer, writer_eval],
|
||
)
|
||
else:
|
||
train_and_evaluate(
|
||
rank,
|
||
epoch,
|
||
hps,
|
||
[net_g, net_d],
|
||
[optim_g, optim_d],
|
||
[scheduler_g, scheduler_d],
|
||
scaler,
|
||
[train_loader, None],
|
||
None,
|
||
None,
|
||
)
|
||
scheduler_g.step()
|
||
print("training done")
|
||
|
||
def train_and_evaluate(
|
||
rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers
|
||
):
|
||
net_g, net_d = nets
|
||
optim_g, optim_d = optims
|
||
# scheduler_g, scheduler_d = schedulers
|
||
train_loader, eval_loader = loaders
|
||
if writers is not None:
|
||
writer, writer_eval = writers
|
||
|
||
train_loader.batch_sampler.set_epoch(epoch)
|
||
global global_step
|
||
|
||
net_g.train()
|
||
for batch_idx, (ssl, spec, mel, ssl_lengths, spec_lengths, text, text_lengths, mel_lengths) in enumerate(tqdm(train_loader)):
|
||
if torch.cuda.is_available():
|
||
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(
|
||
rank, non_blocking=True
|
||
)
|
||
mel, mel_lengths = mel.cuda(rank, non_blocking=True), mel_lengths.cuda(
|
||
rank, non_blocking=True
|
||
)
|
||
ssl = ssl.cuda(rank, non_blocking=True)
|
||
ssl.requires_grad = False
|
||
text, text_lengths = text.cuda(rank, non_blocking=True), text_lengths.cuda(
|
||
rank, non_blocking=True
|
||
)
|
||
else:
|
||
spec, spec_lengths = spec.to(device), spec_lengths.to(device)
|
||
mel, mel_lengths = mel.to(device), mel_lengths.to(device)
|
||
ssl = ssl.to(device)
|
||
ssl.requires_grad = False
|
||
text, text_lengths = text.to(device), text_lengths.to(device)
|
||
|
||
with autocast(enabled=hps.train.fp16_run):
|
||
cfm_loss = net_g(ssl, spec, mel,ssl_lengths,spec_lengths, text, text_lengths,mel_lengths, use_grad_ckpt=hps.train.grad_ckpt)
|
||
loss_gen_all=cfm_loss
|
||
optim_g.zero_grad()
|
||
scaler.scale(loss_gen_all).backward()
|
||
scaler.unscale_(optim_g)
|
||
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
||
scaler.step(optim_g)
|
||
scaler.update()
|
||
|
||
if rank == 0:
|
||
if global_step % hps.train.log_interval == 0:
|
||
lr = optim_g.param_groups[0]['lr']
|
||
losses = [cfm_loss]
|
||
logger.info('Train Epoch: {} [{:.0f}%]'.format(
|
||
epoch,
|
||
100. * batch_idx / len(train_loader)))
|
||
logger.info([x.item() for x in losses] + [global_step, lr])
|
||
|
||
scalar_dict = {"loss/g/total": loss_gen_all, "learning_rate": lr, "grad_norm_g": grad_norm_g}
|
||
utils.summarize(
|
||
writer=writer,
|
||
global_step=global_step,
|
||
scalars=scalar_dict)
|
||
|
||
global_step += 1
|
||
if epoch % hps.train.save_every_epoch == 0 and rank == 0:
|
||
if hps.train.if_save_latest == 0:
|
||
utils.save_checkpoint(
|
||
net_g,
|
||
optim_g,
|
||
hps.train.learning_rate,
|
||
epoch,
|
||
os.path.join(
|
||
save_root, "G_{}.pth".format(global_step)
|
||
),
|
||
)
|
||
else:
|
||
utils.save_checkpoint(
|
||
net_g,
|
||
optim_g,
|
||
hps.train.learning_rate,
|
||
epoch,
|
||
os.path.join(
|
||
save_root, "G_{}.pth".format(233333333333)
|
||
),
|
||
)
|
||
if rank == 0 and hps.train.if_save_every_weights == True:
|
||
if hasattr(net_g, "module"):
|
||
ckpt = net_g.module.state_dict()
|
||
else:
|
||
ckpt = net_g.state_dict()
|
||
sim_ckpt=od()
|
||
for key in ckpt:
|
||
# if "cfm"not in key:
|
||
# print(key)
|
||
if key not in no_grad_names:
|
||
sim_ckpt[key]=ckpt[key].half().cpu()
|
||
logger.info(
|
||
"saving ckpt %s_e%s:%s"
|
||
% (
|
||
hps.name,
|
||
epoch,
|
||
savee(
|
||
sim_ckpt,
|
||
hps.name + "_e%s_s%s_l%s" % (epoch, global_step,lora_rank),
|
||
epoch,
|
||
global_step,
|
||
hps,lora_rank=lora_rank
|
||
),
|
||
)
|
||
)
|
||
|
||
if rank == 0:
|
||
logger.info("====> Epoch: {}".format(epoch))
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main()
|