mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 04:22:46 +08:00
180 lines
7.3 KiB
Python
180 lines
7.3 KiB
Python
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/train_t2s.py
|
||
import os
|
||
import pdb
|
||
|
||
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
||
import argparse
|
||
import logging
|
||
from pathlib import Path
|
||
|
||
import torch, platform
|
||
from pytorch_lightning import seed_everything
|
||
from pytorch_lightning import Trainer
|
||
from pytorch_lightning.callbacks import ModelCheckpoint
|
||
from pytorch_lightning.loggers import TensorBoardLogger # WandbLogger
|
||
from pytorch_lightning.strategies import DDPStrategy
|
||
from AR.data.data_module import Text2SemanticDataModule
|
||
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
||
from AR.utils.io import load_yaml_config
|
||
|
||
logging.getLogger("numba").setLevel(logging.WARNING)
|
||
logging.getLogger("matplotlib").setLevel(logging.WARNING)
|
||
torch.set_float32_matmul_precision("high")
|
||
from AR.utils import get_newest_ckpt
|
||
|
||
from collections import OrderedDict
|
||
from time import time as ttime
|
||
import shutil
|
||
from process_ckpt import my_save
|
||
|
||
|
||
class my_model_ckpt(ModelCheckpoint):
|
||
def __init__(
|
||
self,
|
||
config,
|
||
if_save_latest,
|
||
if_save_every_weights,
|
||
half_weights_save_dir,
|
||
exp_name,
|
||
**kwargs
|
||
):
|
||
super().__init__(**kwargs)
|
||
self.if_save_latest = if_save_latest
|
||
self.if_save_every_weights = if_save_every_weights
|
||
self.half_weights_save_dir = half_weights_save_dir
|
||
self.exp_name = exp_name
|
||
self.config = config
|
||
|
||
def on_train_epoch_end(self, trainer, pl_module):
|
||
# if not self._should_skip_saving_checkpoint(trainer) and self._should_save_on_train_epoch_end(trainer):
|
||
if self._should_save_on_train_epoch_end(trainer):
|
||
monitor_candidates = self._monitor_candidates(trainer)
|
||
if (
|
||
self._every_n_epochs >= 1
|
||
and (trainer.current_epoch + 1) % self._every_n_epochs == 0
|
||
):
|
||
if (
|
||
self.if_save_latest == True
|
||
): ####如果设置只保存最后一个ckpt,在保存下一个ckpt后要清理掉之前的所有ckpt
|
||
to_clean = list(os.listdir(self.dirpath))
|
||
self._save_topk_checkpoint(trainer, monitor_candidates)
|
||
if self.if_save_latest == True:
|
||
for name in to_clean:
|
||
try:
|
||
os.remove("%s/%s" % (self.dirpath, name))
|
||
except:
|
||
pass
|
||
if self.if_save_every_weights == True:
|
||
to_save_od = OrderedDict()
|
||
to_save_od["weight"] = OrderedDict()
|
||
dictt = trainer.strategy._lightning_module.state_dict()
|
||
for key in dictt:
|
||
to_save_od["weight"][key] = dictt[key].half()
|
||
to_save_od["config"] = self.config
|
||
to_save_od["info"] = "GPT-e%s" % (trainer.current_epoch + 1)
|
||
# torch.save(
|
||
# print(os.environ)
|
||
if(os.environ.get("LOCAL_RANK","0")=="0"):
|
||
my_save(
|
||
to_save_od,
|
||
"%s/%s-e%s.ckpt"
|
||
% (
|
||
self.half_weights_save_dir,
|
||
self.exp_name,
|
||
trainer.current_epoch + 1,
|
||
),
|
||
)
|
||
self._save_last_checkpoint(trainer, monitor_candidates)
|
||
|
||
|
||
def main(args):
|
||
config = load_yaml_config(args.config_file)
|
||
|
||
output_dir = Path(config["output_dir"])
|
||
output_dir.mkdir(parents=True, exist_ok=True)
|
||
|
||
ckpt_dir = output_dir / "ckpt"
|
||
ckpt_dir.mkdir(parents=True, exist_ok=True)
|
||
|
||
seed_everything(config["train"]["seed"], workers=True)
|
||
ckpt_callback: ModelCheckpoint = my_model_ckpt(
|
||
config=config,
|
||
if_save_latest=config["train"]["if_save_latest"],
|
||
if_save_every_weights=config["train"]["if_save_every_weights"],
|
||
half_weights_save_dir=config["train"]["half_weights_save_dir"],
|
||
exp_name=config["train"]["exp_name"],
|
||
save_top_k=-1,
|
||
monitor="top_3_acc",
|
||
mode="max",
|
||
save_on_train_epoch_end=True,
|
||
every_n_epochs=config["train"]["save_every_n_epoch"],
|
||
dirpath=ckpt_dir,
|
||
)
|
||
logger = TensorBoardLogger(name=output_dir.stem, save_dir=output_dir)
|
||
os.environ["MASTER_ADDR"]="localhost"
|
||
os.environ["USE_LIBUV"] = "0"
|
||
trainer: Trainer = Trainer(
|
||
max_epochs=config["train"]["epochs"],
|
||
accelerator="gpu" if torch.cuda.is_available() else "cpu",
|
||
# val_check_interval=9999999999999999999999,###不要验证
|
||
# check_val_every_n_epoch=None,
|
||
limit_val_batches=0,
|
||
devices=-1 if torch.cuda.is_available() else 1,
|
||
benchmark=False,
|
||
fast_dev_run=False,
|
||
strategy = DDPStrategy(
|
||
process_group_backend="nccl" if platform.system() != "Windows" else "gloo"
|
||
) if torch.cuda.is_available() else "auto",
|
||
precision=config["train"]["precision"],
|
||
logger=logger,
|
||
num_sanity_val_steps=0,
|
||
callbacks=[ckpt_callback],
|
||
use_distributed_sampler=False, # 非常简单的修改,但解决了采用自定义的 bucket_sampler 下训练步数不一致的问题!
|
||
)
|
||
|
||
model: Text2SemanticLightningModule = Text2SemanticLightningModule(
|
||
config, output_dir
|
||
)
|
||
|
||
data_module: Text2SemanticDataModule = Text2SemanticDataModule(
|
||
config,
|
||
train_semantic_path=config["train_semantic_path"],
|
||
train_phoneme_path=config["train_phoneme_path"],
|
||
# dev_semantic_path=args.dev_semantic_path,
|
||
# dev_phoneme_path=args.dev_phoneme_path
|
||
)
|
||
|
||
try:
|
||
# 使用正则表达式匹配文件名中的数字部分,并按数字大小进行排序
|
||
newest_ckpt_name = get_newest_ckpt(os.listdir(ckpt_dir))
|
||
ckpt_path = ckpt_dir / newest_ckpt_name
|
||
except Exception:
|
||
ckpt_path = None
|
||
print("ckpt_path:", ckpt_path)
|
||
trainer.fit(model, data_module, ckpt_path=ckpt_path)
|
||
|
||
|
||
# srun --gpus-per-node=1 --ntasks-per-node=1 python train.py --path-to-configuration configurations/default.yaml
|
||
if __name__ == "__main__":
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument(
|
||
"-c",
|
||
"--config_file",
|
||
type=str,
|
||
default="configs/s1longer.yaml",
|
||
help="path of config file",
|
||
)
|
||
# args for dataset
|
||
# parser.add_argument('--train_semantic_path',type=str,default='/data/docker/liujing04/gpt-vits/fine_tune_dataset/xuangou/6-name2semantic.tsv')
|
||
# parser.add_argument('--train_phoneme_path', type=str, default='/data/docker/liujing04/gpt-vits/fine_tune_dataset/xuangou/2-name2text.txt')
|
||
|
||
# parser.add_argument('--dev_semantic_path', type=str, default='dump_mix/semantic_dev.tsv')
|
||
# parser.add_argument('--dev_phoneme_path', type=str, default='dump_mix/phoneme_dev.npy')
|
||
# parser.add_argument('--output_dir',type=str,default='/data/docker/liujing04/gpt-vits/fine_tune_dataset/xuangou/logs_s1',help='directory to save the results')
|
||
# parser.add_argument('--output_dir',type=str,default='/liujing04/gpt_logs/s1/xuangou_ft',help='directory to save the results')
|
||
|
||
args = parser.parse_args()
|
||
logging.info(str(args))
|
||
main(args)
|