GPT-SoVITS/GPT_SoVITS/export_torch_script.py
zzz b0e465eb72
feat: 添加导出 v3 的 script (#2208)
* feat: 添加导出 v3 的 script

* Fix: 由于 export_torch_script_v3 的改动,v2 现在需要传入 top_k
2025-03-26 14:50:55 +08:00

850 lines
31 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py
# reference: https://github.com/lifeiteng/vall-e
import argparse
from typing import Optional
from my_utils import load_audio
from text import cleaned_text_to_sequence
import torch
import torchaudio
from torch import IntTensor, LongTensor, Tensor, nn
from torch.nn import functional as F
from transformers import AutoModelForMaskedLM, AutoTokenizer
from feature_extractor import cnhubert
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from module.models_onnx import SynthesizerTrn
from inference_webui import get_phones_and_bert
import os
import soundfile
default_config = {
"embedding_dim": 512,
"hidden_dim": 512,
"num_head": 8,
"num_layers": 12,
"num_codebook": 8,
"p_dropout": 0.0,
"vocab_size": 1024 + 1,
"phoneme_vocab_size": 512,
"EOS": 1024,
}
def get_raw_t2s_model(dict_s1) -> Text2SemanticLightningModule:
config = dict_s1["config"]
config["model"]["dropout"] = float(config["model"]["dropout"])
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
t2s_model.load_state_dict(dict_s1["weight"])
t2s_model = t2s_model.eval()
return t2s_model
@torch.jit.script
def logits_to_probs(
logits,
previous_tokens: Optional[torch.Tensor] = None,
temperature: float = 1.0,
top_k: Optional[int] = None,
top_p: Optional[int] = None,
repetition_penalty: float = 1.0,
):
# if previous_tokens is not None:
# previous_tokens = previous_tokens.squeeze()
# print(logits.shape,previous_tokens.shape)
# pdb.set_trace()
if previous_tokens is not None and repetition_penalty != 1.0:
previous_tokens = previous_tokens.long()
score = torch.gather(logits, dim=1, index=previous_tokens)
score = torch.where(
score < 0, score * repetition_penalty, score / repetition_penalty
)
logits.scatter_(dim=1, index=previous_tokens, src=score)
if top_p is not None and top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cum_probs = torch.cumsum(
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
)
sorted_indices_to_remove = cum_probs > top_p
sorted_indices_to_remove[:, 0] = False # keep at least one option
indices_to_remove = sorted_indices_to_remove.scatter(
dim=1, index=sorted_indices, src=sorted_indices_to_remove
)
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
logits = logits / max(temperature, 1e-5)
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
pivot = v[: , -1].unsqueeze(-1)
logits = torch.where(logits < pivot, -float("Inf"), logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
return probs
@torch.jit.script
def multinomial_sample_one_no_sync(probs_sort):
# Does multinomial sampling without a cuda synchronization
q = torch.randn_like(probs_sort)
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
@torch.jit.script
def sample(
logits,
previous_tokens,
temperature: float = 1.0,
top_k: Optional[int] = None,
top_p: Optional[int] = None,
repetition_penalty: float = 1.0,
):
probs = logits_to_probs(
logits=logits, previous_tokens=previous_tokens, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty
)
idx_next = multinomial_sample_one_no_sync(probs)
return idx_next, probs
@torch.jit.script
def spectrogram_torch(y:Tensor, n_fft:int, sampling_rate:int, hop_size:int, win_size:int, center:bool=False):
hann_window = torch.hann_window(win_size,device=y.device,dtype=y.dtype)
y = torch.nn.functional.pad(
y.unsqueeze(1),
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
mode="reflect",
)
y = y.squeeze(1)
spec = torch.stft(
y,
n_fft,
hop_length=hop_size,
win_length=win_size,
window=hann_window,
center=center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=False,
)
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
return spec
class DictToAttrRecursive(dict):
def __init__(self, input_dict):
super().__init__(input_dict)
for key, value in input_dict.items():
if isinstance(value, dict):
value = DictToAttrRecursive(value)
self[key] = value
setattr(self, key, value)
def __getattr__(self, item):
try:
return self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
def __setattr__(self, key, value):
if isinstance(value, dict):
value = DictToAttrRecursive(value)
super(DictToAttrRecursive, self).__setitem__(key, value)
super().__setattr__(key, value)
def __delattr__(self, item):
try:
del self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
@torch.jit.script
class T2SMLP:
def __init__(self, w1, b1, w2, b2):
self.w1 = w1
self.b1 = b1
self.w2 = w2
self.b2 = b2
def forward(self, x):
x = F.relu(F.linear(x, self.w1, self.b1))
x = F.linear(x, self.w2, self.b2)
return x
@torch.jit.script
class T2SBlock:
def __init__(
self,
num_heads: int,
hidden_dim: int,
mlp: T2SMLP,
qkv_w,
qkv_b,
out_w,
out_b,
norm_w1,
norm_b1,
norm_eps1: float,
norm_w2,
norm_b2,
norm_eps2: float,
):
self.num_heads = num_heads
self.mlp = mlp
self.hidden_dim: int = hidden_dim
self.qkv_w = qkv_w
self.qkv_b = qkv_b
self.out_w = out_w
self.out_b = out_b
self.norm_w1 = norm_w1
self.norm_b1 = norm_b1
self.norm_eps1 = norm_eps1
self.norm_w2 = norm_w2
self.norm_b2 = norm_b2
self.norm_eps2 = norm_eps2
self.false = torch.tensor(False, dtype=torch.bool)
@torch.jit.ignore
def to_mask(self, x:torch.Tensor, padding_mask:Optional[torch.Tensor]):
if padding_mask is None:
return x
if padding_mask.dtype == torch.bool:
return x.masked_fill(padding_mask, 0)
else:
return x * padding_mask
def process_prompt(self, x:torch.Tensor, attn_mask : torch.Tensor, padding_mask:Optional[torch.Tensor]=None):
q, k, v = F.linear(self.to_mask(x, padding_mask), self.qkv_w, self.qkv_b).chunk(3, dim=-1)
batch_size = q.shape[0]
q_len = q.shape[1]
kv_len = k.shape[1]
q = self.to_mask(q, padding_mask)
k_cache = self.to_mask(k, padding_mask)
v_cache = self.to_mask(v, padding_mask)
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
attn = F.scaled_dot_product_attention(q, k, v, ~attn_mask)
attn = attn.permute(2, 0, 1, 3).reshape(batch_size*q_len, self.hidden_dim)
attn = attn.view(q_len, batch_size, self.hidden_dim).transpose(1, 0)
attn = F.linear(self.to_mask(attn, padding_mask), self.out_w, self.out_b)
if padding_mask is not None:
for i in range(batch_size):
# mask = padding_mask[i,:,0]
if self.false.device!= padding_mask.device:
self.false = self.false.to(padding_mask.device)
idx = torch.where(padding_mask[i,:,0]==self.false)[0]
x_item = x[i,idx,:].unsqueeze(0)
attn_item = attn[i,idx,:].unsqueeze(0)
x_item = x_item + attn_item
x_item = F.layer_norm(
x_item, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1
)
x_item = x_item + self.mlp.forward(x_item)
x_item = F.layer_norm(
x_item,
[self.hidden_dim],
self.norm_w2,
self.norm_b2,
self.norm_eps2,
)
x[i,idx,:] = x_item.squeeze(0)
x = self.to_mask(x, padding_mask)
else:
x = x + attn
x = F.layer_norm(
x, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1
)
x = x + self.mlp.forward(x)
x = F.layer_norm(
x,
[self.hidden_dim],
self.norm_w2,
self.norm_b2,
self.norm_eps2,
)
return x, k_cache, v_cache
def decode_next_token(self, x:torch.Tensor, k_cache:torch.Tensor, v_cache:torch.Tensor):
q, k, v = F.linear(x, self.qkv_w, self.qkv_b).chunk(3, dim=-1)
k_cache = torch.cat([k_cache, k], dim=1)
v_cache = torch.cat([v_cache, v], dim=1)
batch_size = q.shape[0]
q_len = q.shape[1]
kv_len = k_cache.shape[1]
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
attn = F.scaled_dot_product_attention(q, k, v)
attn = attn.permute(2, 0, 1, 3).reshape(batch_size*q_len, self.hidden_dim)
attn = attn.view(q_len, batch_size, self.hidden_dim).transpose(1, 0)
attn = F.linear(attn, self.out_w, self.out_b)
x = x + attn
x = F.layer_norm(
x, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1
)
x = x + self.mlp.forward(x)
x = F.layer_norm(
x,
[self.hidden_dim],
self.norm_w2,
self.norm_b2,
self.norm_eps2,
)
return x, k_cache, v_cache
@torch.jit.script
class T2STransformer:
def __init__(self, num_blocks : int, blocks: list[T2SBlock]):
self.num_blocks : int = num_blocks
self.blocks = blocks
def process_prompt(
self, x:torch.Tensor, attn_mask : torch.Tensor,padding_mask : Optional[torch.Tensor]=None):
k_cache : list[torch.Tensor] = []
v_cache : list[torch.Tensor] = []
for i in range(self.num_blocks):
x, k_cache_, v_cache_ = self.blocks[i].process_prompt(x, attn_mask, padding_mask)
k_cache.append(k_cache_)
v_cache.append(v_cache_)
return x, k_cache, v_cache
def decode_next_token(
self, x:torch.Tensor,
k_cache: list[torch.Tensor],
v_cache: list[torch.Tensor]):
for i in range(self.num_blocks):
x, k_cache[i], v_cache[i] = self.blocks[i].decode_next_token(x, k_cache[i], v_cache[i])
return x, k_cache, v_cache
class VitsModel(nn.Module):
def __init__(self, vits_path):
super().__init__()
# dict_s2 = torch.load(vits_path,map_location="cpu")
dict_s2 = torch.load(vits_path)
self.hps = dict_s2["config"]
if dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322:
self.hps["model"]["version"] = "v1"
else:
self.hps["model"]["version"] = "v2"
self.hps = DictToAttrRecursive(self.hps)
self.hps.model.semantic_frame_rate = "25hz"
self.vq_model = SynthesizerTrn(
self.hps.data.filter_length // 2 + 1,
self.hps.train.segment_size // self.hps.data.hop_length,
n_speakers=self.hps.data.n_speakers,
**self.hps.model
)
self.vq_model.eval()
self.vq_model.load_state_dict(dict_s2["weight"], strict=False)
def forward(self, text_seq, pred_semantic, ref_audio, speed=1.0):
refer = spectrogram_torch(
ref_audio,
self.hps.data.filter_length,
self.hps.data.sampling_rate,
self.hps.data.hop_length,
self.hps.data.win_length,
center=False
)
return self.vq_model(pred_semantic, text_seq, refer, speed)[0, 0]
class T2SModel(nn.Module):
def __init__(self,raw_t2s:Text2SemanticLightningModule):
super(T2SModel, self).__init__()
self.model_dim = raw_t2s.model.model_dim
self.embedding_dim = raw_t2s.model.embedding_dim
self.num_head = raw_t2s.model.num_head
self.num_layers = raw_t2s.model.num_layers
self.vocab_size = raw_t2s.model.vocab_size
self.phoneme_vocab_size = raw_t2s.model.phoneme_vocab_size
# self.p_dropout = float(raw_t2s.model.p_dropout)
self.EOS:int = int(raw_t2s.model.EOS)
self.norm_first = raw_t2s.model.norm_first
assert self.EOS == self.vocab_size - 1
self.hz = 50
self.bert_proj = raw_t2s.model.bert_proj
self.ar_text_embedding = raw_t2s.model.ar_text_embedding
self.ar_text_position = raw_t2s.model.ar_text_position
self.ar_audio_embedding = raw_t2s.model.ar_audio_embedding
self.ar_audio_position = raw_t2s.model.ar_audio_position
# self.t2s_transformer = T2STransformer(self.num_layers, blocks)
# self.t2s_transformer = raw_t2s.model.t2s_transformer
blocks = []
h = raw_t2s.model.h
for i in range(self.num_layers):
layer = h.layers[i]
t2smlp = T2SMLP(
layer.linear1.weight,
layer.linear1.bias,
layer.linear2.weight,
layer.linear2.bias
)
block = T2SBlock(
self.num_head,
self.model_dim,
t2smlp,
layer.self_attn.in_proj_weight,
layer.self_attn.in_proj_bias,
layer.self_attn.out_proj.weight,
layer.self_attn.out_proj.bias,
layer.norm1.weight,
layer.norm1.bias,
layer.norm1.eps,
layer.norm2.weight,
layer.norm2.bias,
layer.norm2.eps
)
blocks.append(block)
self.t2s_transformer = T2STransformer(self.num_layers, blocks)
# self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
self.ar_predict_layer = raw_t2s.model.ar_predict_layer
# self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
self.max_sec = raw_t2s.config["data"]["max_sec"]
self.top_k = int(raw_t2s.config["inference"]["top_k"])
self.early_stop_num = torch.LongTensor([self.hz * self.max_sec])
def forward(self,prompts:LongTensor, ref_seq:LongTensor, text_seq:LongTensor, ref_bert:torch.Tensor, text_bert:torch.Tensor,top_k:LongTensor):
bert = torch.cat([ref_bert.T, text_bert.T], 1)
all_phoneme_ids = torch.cat([ref_seq, text_seq], 1)
bert = bert.unsqueeze(0)
x = self.ar_text_embedding(all_phoneme_ids)
x = x + self.bert_proj(bert.transpose(1, 2))
x:torch.Tensor = self.ar_text_position(x)
early_stop_num = self.early_stop_num
#[1,N,512] [1,N]
# y, k, v, y_emb, x_example = self.first_stage_decoder(x, prompts)
y = prompts
# x_example = x[:,:,0] * 0.0
x_len = x.shape[1]
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
y_emb = self.ar_audio_embedding(y)
y_len = y_emb.shape[1]
prefix_len = y.shape[1]
y_pos = self.ar_audio_position(y_emb)
xy_pos = torch.concat([x, y_pos], dim=1)
bsz = x.shape[0]
src_len = x_len + y_len
x_attn_mask_pad = F.pad(
x_attn_mask,
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1(x,x+y)
value=True,
)
y_attn_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
(x_len, 0),
value=False,
)
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)\
.unsqueeze(0)\
.expand(bsz*self.num_head, -1, -1)\
.view(bsz, self.num_head, src_len, src_len)\
.to(device=x.device, dtype=torch.bool)
idx = 0
top_k = int(top_k)
xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, xy_attn_mask, None)
logits = self.ar_predict_layer(xy_dec[:, -1])
logits = logits[:, :-1]
samples = sample(logits, y, top_k=top_k, top_p=1, repetition_penalty=1.35, temperature=1.0)[0]
y = torch.concat([y, samples], dim=1)
y_emb = self.ar_audio_embedding(y[:, -1:])
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len + idx].to(dtype=y_emb.dtype,device=y_emb.device)
stop = False
# for idx in range(1, 50):
for idx in range(1, 1500):
#[1, N] [N_layer, N, 1, 512] [N_layer, N, 1, 512] [1, N, 512] [1] [1, N, 512] [1, N]
# y, k, v, y_emb, logits, samples = self.stage_decoder(y, k, v, y_emb, x_example)
xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache)
logits = self.ar_predict_layer(xy_dec[:, -1])
if(idx<11):###至少预测出10个token不然不给停止0.4s
logits = logits[:, :-1]
samples = sample(logits, y, top_k=top_k, top_p=1, repetition_penalty=1.35, temperature=1.0)[0]
y = torch.concat([y, samples], dim=1)
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
stop = True
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
stop = True
if stop:
if y.shape[1] == 0:
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
break
y_emb = self.ar_audio_embedding(y[:, -1:])
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len + idx].to(dtype=y_emb.dtype,device=y_emb.device)
y[0,-1] = 0
return y[:, -idx:].unsqueeze(0)
bert_path = os.environ.get(
"bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
)
cnhubert_base_path = "GPT_SoVITS/pretrained_models/chinese-hubert-base"
cnhubert.cnhubert_base_path = cnhubert_base_path
@torch.jit.script
def build_phone_level_feature(res:Tensor, word2ph:IntTensor):
phone_level_feature = []
for i in range(word2ph.shape[0]):
repeat_feature = res[i].repeat(word2ph[i].item(), 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
# [sum(word2ph), 1024]
return phone_level_feature
class MyBertModel(torch.nn.Module):
def __init__(self, bert_model):
super(MyBertModel, self).__init__()
self.bert = bert_model
def forward(self, input_ids:torch.Tensor, attention_mask:torch.Tensor, token_type_ids:torch.Tensor, word2ph:IntTensor):
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
# res = torch.cat(outputs["hidden_states"][-3:-2], -1)[0][1:-1]
res = torch.cat(outputs[1][-3:-2], -1)[0][1:-1]
return build_phone_level_feature(res, word2ph)
class SSLModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.ssl = cnhubert.get_model().model
def forward(self, ref_audio_16k)-> torch.Tensor:
ssl_content = self.ssl(ref_audio_16k)["last_hidden_state"].transpose(1, 2)
return ssl_content
class ExportSSLModel(torch.nn.Module):
def __init__(self,ssl:SSLModel):
super().__init__()
self.ssl = ssl
def forward(self, ref_audio:torch.Tensor):
return self.ssl(ref_audio)
@torch.jit.export
def resample(self,ref_audio:torch.Tensor,src_sr:int,dst_sr:int)->torch.Tensor:
audio = resamplex(ref_audio,src_sr,dst_sr).float()
return audio
def export_bert(output_path):
tokenizer = AutoTokenizer.from_pretrained(bert_path)
text = "叹息声一声接着一声传出,木兰对着房门织布.听不见织布机织布的声音,只听见木兰在叹息.问木兰在想什么?问木兰在惦记什么?木兰答道,我也没有在想什么,也没有在惦记什么."
ref_bert_inputs = tokenizer(text, return_tensors="pt")
word2ph = []
for c in text:
if c in ['','','','',",",".","?"]:
word2ph.append(1)
else:
word2ph.append(2)
ref_bert_inputs['word2ph'] = torch.Tensor(word2ph).int()
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path,output_hidden_states=True,torchscript=True)
my_bert_model = MyBertModel(bert_model)
ref_bert_inputs = {
'input_ids': ref_bert_inputs['input_ids'],
'attention_mask': ref_bert_inputs['attention_mask'],
'token_type_ids': ref_bert_inputs['token_type_ids'],
'word2ph': ref_bert_inputs['word2ph']
}
torch._dynamo.mark_dynamic(ref_bert_inputs['input_ids'], 1)
torch._dynamo.mark_dynamic(ref_bert_inputs['attention_mask'], 1)
torch._dynamo.mark_dynamic(ref_bert_inputs['token_type_ids'], 1)
torch._dynamo.mark_dynamic(ref_bert_inputs['word2ph'], 0)
my_bert_model = torch.jit.trace(my_bert_model,example_kwarg_inputs=ref_bert_inputs)
output_path = os.path.join(output_path, "bert_model.pt")
my_bert_model.save(output_path)
print('#### exported bert ####')
def export(gpt_path, vits_path, ref_audio_path, ref_text, output_path, export_bert_and_ssl=False, device='cpu'):
if not os.path.exists(output_path):
os.makedirs(output_path)
print(f"目录已创建: {output_path}")
else:
print(f"目录已存在: {output_path}")
ref_audio = torch.tensor([load_audio(ref_audio_path, 16000)]).float()
ssl = SSLModel()
if export_bert_and_ssl:
s = ExportSSLModel(torch.jit.trace(ssl,example_inputs=(ref_audio)))
ssl_path = os.path.join(output_path, "ssl_model.pt")
torch.jit.script(s).save(ssl_path)
print('#### exported ssl ####')
export_bert(output_path)
else:
s = ExportSSLModel(ssl)
print(f"device: {device}")
ref_seq_id,ref_bert_T,ref_norm_text = get_phones_and_bert(ref_text,"all_zh",'v2')
ref_seq = torch.LongTensor([ref_seq_id]).to(device)
ref_bert = ref_bert_T.T.to(ref_seq.device)
text_seq_id,text_bert_T,norm_text = get_phones_and_bert("这是一条测试语音,说什么无所谓,只是给它一个例子","all_zh",'v2')
text_seq = torch.LongTensor([text_seq_id]).to(device)
text_bert = text_bert_T.T.to(text_seq.device)
ssl_content = ssl(ref_audio).to(device)
# vits_path = "SoVITS_weights_v2/xw_e8_s216.pth"
vits = VitsModel(vits_path).to(device)
vits.eval()
# gpt_path = "GPT_weights_v2/xw-e15.ckpt"
# dict_s1 = torch.load(gpt_path, map_location=device)
dict_s1 = torch.load(gpt_path)
raw_t2s = get_raw_t2s_model(dict_s1).to(device)
print('#### get_raw_t2s_model ####')
print(raw_t2s.config)
t2s_m = T2SModel(raw_t2s)
t2s_m.eval()
t2s = torch.jit.script(t2s_m).to(device)
print('#### script t2s_m ####')
print("vits.hps.data.sampling_rate:",vits.hps.data.sampling_rate)
gpt_sovits = GPT_SoVITS(t2s,vits).to(device)
gpt_sovits.eval()
ref_audio_sr = s.resample(ref_audio,16000,32000).to(device)
torch._dynamo.mark_dynamic(ssl_content, 2)
torch._dynamo.mark_dynamic(ref_audio_sr, 1)
torch._dynamo.mark_dynamic(ref_seq, 1)
torch._dynamo.mark_dynamic(text_seq, 1)
torch._dynamo.mark_dynamic(ref_bert, 0)
torch._dynamo.mark_dynamic(text_bert, 0)
top_k = torch.LongTensor([5]).to(device)
with torch.no_grad():
gpt_sovits_export = torch.jit.trace(
gpt_sovits,
example_inputs=(
ssl_content,
ref_audio_sr,
ref_seq,
text_seq,
ref_bert,
text_bert,
top_k))
gpt_sovits_path = os.path.join(output_path, "gpt_sovits_model.pt")
gpt_sovits_export.save(gpt_sovits_path)
print('#### exported gpt_sovits ####')
@torch.jit.script
def parse_audio(ref_audio):
ref_audio_16k = torchaudio.functional.resample(ref_audio,48000,16000).float()#.to(ref_audio.device)
ref_audio_sr = torchaudio.functional.resample(ref_audio,48000,32000).float()#.to(ref_audio.device)
return ref_audio_16k,ref_audio_sr
@torch.jit.script
def resamplex(ref_audio:torch.Tensor,src_sr:int,dst_sr:int)->torch.Tensor:
return torchaudio.functional.resample(ref_audio,src_sr,dst_sr).float()
class GPT_SoVITS(nn.Module):
def __init__(self, t2s:T2SModel,vits:VitsModel):
super().__init__()
self.t2s = t2s
self.vits = vits
def forward(
self,
ssl_content: torch.Tensor,
ref_audio_sr: torch.Tensor,
ref_seq: Tensor,
text_seq: Tensor,
ref_bert: Tensor,
text_bert: Tensor,
top_k: LongTensor,
speed=1.0,
):
codes = self.vits.vq_model.extract_latent(ssl_content)
prompt_semantic = codes[0, 0]
prompts = prompt_semantic.unsqueeze(0)
pred_semantic = self.t2s(prompts, ref_seq, text_seq, ref_bert, text_bert, top_k)
audio = self.vits(text_seq, pred_semantic, ref_audio_sr, speed)
return audio
def test():
parser = argparse.ArgumentParser(description="GPT-SoVITS Command Line Tool")
parser.add_argument('--gpt_model', required=True, help="Path to the GPT model file")
parser.add_argument('--sovits_model', required=True, help="Path to the SoVITS model file")
parser.add_argument('--ref_audio', required=True, help="Path to the reference audio file")
parser.add_argument('--ref_text', required=True, help="Path to the reference text file")
parser.add_argument('--output_path', required=True, help="Path to the output directory")
args = parser.parse_args()
gpt_path = args.gpt_model
vits_path = args.sovits_model
ref_audio_path = args.ref_audio
ref_text = args.ref_text
tokenizer = AutoTokenizer.from_pretrained(bert_path)
# bert_model = AutoModelForMaskedLM.from_pretrained(bert_path,output_hidden_states=True,torchscript=True)
# bert = MyBertModel(bert_model)
my_bert = torch.jit.load("onnx/bert_model.pt",map_location='cuda')
# dict_s1 = torch.load(gpt_path, map_location="cuda")
# raw_t2s = get_raw_t2s_model(dict_s1)
# t2s = T2SModel(raw_t2s)
# t2s.eval()
# t2s = torch.jit.load("onnx/xw/t2s_model.pt",map_location='cuda')
# vits_path = "SoVITS_weights_v2/xw_e8_s216.pth"
# vits = VitsModel(vits_path)
# vits.eval()
# ssl = ExportSSLModel(SSLModel()).to('cuda')
# ssl.eval()
ssl = torch.jit.load("onnx/by/ssl_model.pt",map_location='cuda')
# gpt_sovits = GPT_SoVITS(t2s,vits)
gpt_sovits = torch.jit.load("onnx/by/gpt_sovits_model.pt",map_location='cuda')
ref_seq_id,ref_bert_T,ref_norm_text = get_phones_and_bert(ref_text,"all_zh",'v2')
ref_seq = torch.LongTensor([ref_seq_id])
ref_bert = ref_bert_T.T.to(ref_seq.device)
# text_seq_id,text_bert_T,norm_text = get_phones_and_bert("昨天晚上看见征兵文书,知道君主在大规模征兵,那么多卷征兵文册,每一卷上都有父亲的名字.","all_zh",'v2')
text = "昨天晚上看见征兵文书,知道君主在大规模征兵,那么多卷征兵文册,每一卷上都有父亲的名字."
text_seq_id,text_bert_T,norm_text = get_phones_and_bert(text,"all_zh",'v2')
test_bert = tokenizer(text, return_tensors="pt")
word2ph = []
for c in text:
if c in ['','','','',"?",",","."]:
word2ph.append(1)
else:
word2ph.append(2)
test_bert['word2ph'] = torch.Tensor(word2ph).int()
test_bert = my_bert(
test_bert['input_ids'].to('cuda'),
test_bert['attention_mask'].to('cuda'),
test_bert['token_type_ids'].to('cuda'),
test_bert['word2ph'].to('cuda')
)
text_seq = torch.LongTensor([text_seq_id])
text_bert = text_bert_T.T.to(text_seq.device)
print('text_bert:',text_bert.shape,text_bert)
print('test_bert:',test_bert.shape,test_bert)
print(torch.allclose(text_bert.to('cuda'),test_bert))
print('text_seq:',text_seq.shape)
print('text_bert:',text_bert.shape,text_bert.type())
#[1,N]
ref_audio = torch.tensor([load_audio(ref_audio_path, 16000)]).float().to('cuda')
print('ref_audio:',ref_audio.shape)
ref_audio_sr = ssl.resample(ref_audio,16000,32000)
print('start ssl')
ssl_content = ssl(ref_audio)
print('start gpt_sovits:')
print('ssl_content:',ssl_content.shape)
print('ref_audio_sr:',ref_audio_sr.shape)
print('ref_seq:',ref_seq.shape)
ref_seq=ref_seq.to('cuda')
print('text_seq:',text_seq.shape)
text_seq=text_seq.to('cuda')
print('ref_bert:',ref_bert.shape)
ref_bert=ref_bert.to('cuda')
print('text_bert:',text_bert.shape)
text_bert=text_bert.to('cuda')
top_k = torch.LongTensor([5]).to('cuda')
with torch.no_grad():
audio = gpt_sovits(ssl_content, ref_audio_sr, ref_seq, text_seq, ref_bert, test_bert, top_k)
print('start write wav')
soundfile.write("out.wav", audio.detach().cpu().numpy(), 32000)
import text
import json
def export_symbel(version='v2'):
if version=='v1':
symbols = text._symbol_to_id_v1
with open(f"onnx/symbols_v1.json", "w") as file:
json.dump(symbols, file, indent=4)
else:
symbols = text._symbol_to_id_v2
with open(f"onnx/symbols_v2.json", "w") as file:
json.dump(symbols, file, indent=4)
def main():
parser = argparse.ArgumentParser(description="GPT-SoVITS Command Line Tool")
parser.add_argument('--gpt_model', required=True, help="Path to the GPT model file")
parser.add_argument('--sovits_model', required=True, help="Path to the SoVITS model file")
parser.add_argument('--ref_audio', required=True, help="Path to the reference audio file")
parser.add_argument('--ref_text', required=True, help="Path to the reference text file")
parser.add_argument('--output_path', required=True, help="Path to the output directory")
parser.add_argument('--export_common_model', action='store_true', help="Export Bert and SSL model")
parser.add_argument('--device', help="Device to use")
args = parser.parse_args()
export(
gpt_path=args.gpt_model,
vits_path=args.sovits_model,
ref_audio_path=args.ref_audio,
ref_text=args.ref_text,
output_path=args.output_path,
device=args.device,
export_bert_and_ssl=args.export_common_model,
)
import inference_webui
if __name__ == "__main__":
inference_webui.is_half=False
inference_webui.dtype=torch.float32
main()
# test()