import traceback from collections import OrderedDict from time import time as ttime import shutil,os import torch from tools.i18n.i18n import I18nAuto i18n = I18nAuto() def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path dir=os.path.dirname(path) name=os.path.basename(path) tmp_path="%s.pth"%(ttime()) torch.save(fea,tmp_path) shutil.move(tmp_path,"%s/%s"%(dir,name)) ''' 00:v1 01:v2 02:v3 03:v3lora ''' from io import BytesIO def my_save2(fea,path): bio = BytesIO() torch.save(fea, bio) bio.seek(0) data = bio.getvalue() data = b'03' + data[2:]###temp for v3lora only, todo with open(path, "wb") as f: f.write(data) def savee(ckpt, name, epoch, steps, hps,lora_rank=None): try: opt = OrderedDict() opt["weight"] = {} for key in ckpt.keys(): if "enc_q" in key: continue opt["weight"][key] = ckpt[key].half() opt["config"] = hps opt["info"] = "%sepoch_%siteration" % (epoch, steps) if lora_rank: opt["lora_rank"]=lora_rank my_save2(opt, "%s/%s.pth" % (hps.save_weight_dir, name)) else: my_save(opt, "%s/%s.pth" % (hps.save_weight_dir, name)) return "Success." except: return traceback.format_exc() head2version={ b'00':["v1","v1",False], b'01':["v2","v2",False], b'02':["v2","v3",False], b'03':["v2","v3",True], } hash_pretrained_dict={ "dc3c97e17592963677a4a1681f30c653":["v2","v2",False],#s2G488k.pth#sovits_v1_pretrained "43797be674a37c1c83ee81081941ed0f":["v2","v3",False],#s2Gv3.pth#sovits_v3_pretrained "6642b37f3dbb1f76882b69937c95a5f3":["v2","v2",False],#s2G2333K.pth#sovits_v2_pretrained } import hashlib def get_hash_from_file(sovits_path): with open(sovits_path,"rb")as f:data=f.read(8192) hash_md5 = hashlib.md5() hash_md5.update(data) return hash_md5.hexdigest() def get_sovits_version_from_path_fast(sovits_path): ###1-if it is pretrained sovits models, by hash hash=get_hash_from_file(sovits_path) if hash in hash_pretrained_dict: return hash_pretrained_dict[hash] ###2-new weights or old weights, by head with open(sovits_path,"rb")as f:version=f.read(2) if version!=b"PK": return head2version[version] ###3-old weights, by file size if_lora_v3=False size=os.path.getsize(sovits_path) ''' v1weights:about 82942KB half thr:82978KB v2weights:about 83014KB v3weights:about 750MB ''' if size < 82978 * 1024: model_version = version = "v1" elif size < 700 * 1024 * 1024: model_version = version = "v2" else: version = "v2" model_version = "v3" return version,model_version,if_lora_v3 def load_sovits_new(sovits_path): f=open(sovits_path,"rb") meta=f.read(2) if meta!="PK": data = b'PK' + f.read() bio = BytesIO() bio.write(data) bio.seek(0) return torch.load(bio, map_location="cpu", weights_only=False) return torch.load(sovits_path,map_location="cpu", weights_only=False)