""" # WebAPI文档 ` python api_v2.py -a 127.0.0.1 -p 9880 -c GPT_SoVITS/configs/tts_infer.yaml ` ## 执行参数: `-a` - `绑定地址, 默认"127.0.0.1"` `-p` - `绑定端口, 默认9880` `-c` - `TTS配置文件路径, 默认"GPT_SoVITS/configs/tts_infer.yaml"` ## 调用: ### 推理 endpoint: `/tts` GET: ``` http://127.0.0.1:9880/tts?text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_lang=zh&ref_audio_path=archive_jingyuan_1.wav&prompt_lang=zh&prompt_text=我是「罗浮」云骑将军景元。不必拘谨,「将军」只是一时的身份,你称呼我景元便可&text_split_method=cut5&batch_size=1&media_type=wav&streaming_mode=true ``` POST: ```json { "text": "", # str.(required) text to be synthesized "text_lang: "", # str.(required) language of the text to be synthesized "ref_audio_path": "", # str.(required) reference audio path "aux_ref_audio_paths": [], # list.(optional) auxiliary reference audio paths for multi-speaker tone fusion "prompt_text": "", # str.(optional) prompt text for the reference audio "prompt_lang": "", # str.(required) language of the prompt text for the reference audio "top_k": 5, # int. top k sampling "top_p": 1, # float. top p sampling "temperature": 1, # float. temperature for sampling "text_split_method": "cut0", # str. text split method, see text_segmentation_method.py for details. "batch_size": 1, # int. batch size for inference "batch_threshold": 0.75, # float. threshold for batch splitting. "split_bucket": True, # bool. whether to split the batch into multiple buckets. "speed_factor":1.0, # float. control the speed of the synthesized audio. "streaming_mode": False, # bool. whether to return a streaming response. "seed": -1, # int. random seed for reproducibility. "parallel_infer": True, # bool. whether to use parallel inference. "repetition_penalty": 1.35, # float. repetition penalty for T2S model. "sample_steps": 32, # int. number of sampling steps for VITS model V3. "super_sampling": False # bool. whether to use super-sampling for audio when using VITS model V3. } ``` RESP: 成功: 直接返回 wav 音频流, http code 200 失败: 返回包含错误信息的 json, http code 400 ### 命令控制 endpoint: `/control` command: "restart": 重新运行 "exit": 结束运行 GET: ``` http://127.0.0.1:9880/control?command=restart ``` POST: ```json { "command": "restart" } ``` RESP: 无 ### 切换GPT模型 endpoint: `/set_gpt_weights` GET: ``` http://127.0.0.1:9880/set_gpt_weights?weights_path=GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt ``` RESP: 成功: 返回"success", http code 200 失败: 返回包含错误信息的 json, http code 400 ### 切换Sovits模型 endpoint: `/set_sovits_weights` GET: ``` http://127.0.0.1:9880/set_sovits_weights?weights_path=GPT_SoVITS/pretrained_models/s2G488k.pth ``` RESP: 成功: 返回"success", http code 200 失败: 返回包含错误信息的 json, http code 400 """ import os import sys import traceback from typing import Generator, Dict, Any, Optional import uuid import asyncio from datetime import datetime now_dir = os.getcwd() sys.path.append(now_dir) sys.path.append("%s/GPT_SoVITS" % (now_dir)) import argparse import subprocess import wave import signal import numpy as np import soundfile as sf from fastapi import FastAPI, Response from fastapi.responses import StreamingResponse, JSONResponse import uvicorn from io import BytesIO from tools.i18n.i18n import I18nAuto from GPT_SoVITS.TTS_infer_pack.TTS import TTS, TTS_Config from GPT_SoVITS.TTS_infer_pack.text_segmentation_method import get_method_names as get_cut_method_names from pydantic import BaseModel import json import yaml # Import config variables (avoiding webui to prevent Gradio loading) from config import ( exp_root, python_exec, is_half, GPU_INDEX, infer_device, SoVITS_weight_version2root, GPT_weight_version2root, ) # print(sys.path) i18n = I18nAuto() cut_method_names = get_cut_method_names() # GPU helper functions (replicated from webui.py to avoid import) set_gpu_numbers = GPU_INDEX default_gpu_numbers = infer_device.index if hasattr(infer_device, 'index') else 0 def fix_gpu_number(input_val): """Fix GPU number to be within valid range.""" try: if int(input_val) not in set_gpu_numbers: return default_gpu_numbers except: return input_val return input_val def fix_gpu_numbers(inputs): """Fix multiple GPU numbers separated by comma.""" output = [] try: for input_val in inputs.split(","): output.append(str(fix_gpu_number(input_val))) return ",".join(output) except: return inputs parser = argparse.ArgumentParser(description="GPT-SoVITS api") parser.add_argument("-c", "--tts_config", type=str, default="GPT_SoVITS/configs/tts_infer.yaml", help="tts_infer路径") parser.add_argument("-a", "--bind_addr", type=str, default="127.0.0.1", help="default: 127.0.0.1") parser.add_argument("-p", "--port", type=int, default="9880", help="default: 9880") args = parser.parse_args() config_path = args.tts_config # device = args.device port = args.port host = args.bind_addr argv = sys.argv if config_path in [None, ""]: config_path = "GPT-SoVITS/configs/tts_infer.yaml" tts_config = TTS_Config(config_path) print(tts_config) tts_pipeline = TTS(tts_config) APP = FastAPI() class TTS_Request(BaseModel): text: str = None text_lang: str = None ref_audio_path: str = None aux_ref_audio_paths: list = None prompt_lang: str = None prompt_text: str = "" top_k: int = 5 top_p: float = 1 temperature: float = 1 text_split_method: str = "cut5" batch_size: int = 1 batch_threshold: float = 0.75 split_bucket: bool = True speed_factor: float = 1.0 fragment_interval: float = 0.3 seed: int = -1 media_type: str = "wav" streaming_mode: bool = False parallel_infer: bool = True repetition_penalty: float = 1.35 sample_steps: int = 32 super_sampling: bool = False class SpeechSlicingRequest(BaseModel): inp: str opt_root: str threshold: str = "-34" min_length: str = "4000" min_interval: str = "300" hop_size: str = "10" max_sil_kept: str = "500" _max: float = 0.9 alpha: float = 0.25 n_parts: int = 4 class STTRequest(BaseModel): input_folder: str output_folder: str model_path: str = "tools/asr/models/faster-whisper-large-v3" language: str = "auto" precision: str = "float32" class DatasetFormattingRequest(BaseModel): inp_text: str inp_wav_dir: str exp_name: str version: str = "v4" gpu_numbers: str = "0-0" bert_pretrained_dir: str = "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large" ssl_pretrained_dir: str = "GPT_SoVITS/pretrained_models/chinese-hubert-base" pretrained_s2G_path: str = "GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth" class FineTuneSoVITSRequest(BaseModel): version: str = "v4" batch_size: int = 2 total_epoch: int = 2 exp_name: str text_low_lr_rate: float = 0.4 if_save_latest: bool = True if_save_every_weights: bool = True save_every_epoch: int = 1 gpu_numbers1Ba: str = "0" pretrained_s2G: str = "GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth" pretrained_s2D: str = "GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Dv4.pth" if_grad_ckpt: bool = False lora_rank: str = "32" class FineTuneGPTRequest(BaseModel): batch_size: int = 8 total_epoch: int = 15 exp_name: str if_dpo: bool = False if_save_latest: bool = True if_save_every_weights: bool = True save_every_epoch: int = 5 gpu_numbers: str = "0" pretrained_s1: str = "GPT_SoVITS/pretrained_models/s1v3.ckpt" jobs: Dict[str, Dict[str, Any]] = {} ### modify from https://github.com/RVC-Boss/GPT-SoVITS/pull/894/files def pack_ogg(io_buffer: BytesIO, data: np.ndarray, rate: int): with sf.SoundFile(io_buffer, mode="w", samplerate=rate, channels=1, format="ogg") as audio_file: audio_file.write(data) return io_buffer def pack_raw(io_buffer: BytesIO, data: np.ndarray, rate: int): io_buffer.write(data.tobytes()) return io_buffer def pack_wav(io_buffer: BytesIO, data: np.ndarray, rate: int): io_buffer = BytesIO() sf.write(io_buffer, data, rate, format="wav") return io_buffer def pack_aac(io_buffer: BytesIO, data: np.ndarray, rate: int): process = subprocess.Popen( [ "ffmpeg", "-f", "s16le", # 输入16位有符号小端整数PCM "-ar", str(rate), # 设置采样率 "-ac", "1", # 单声道 "-i", "pipe:0", # 从管道读取输入 "-c:a", "aac", # 音频编码器为AAC "-b:a", "192k", # 比特率 "-vn", # 不包含视频 "-f", "adts", # 输出AAC数据流格式 "pipe:1", # 将输出写入管道 ], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) out, _ = process.communicate(input=data.tobytes()) io_buffer.write(out) return io_buffer def pack_audio(io_buffer: BytesIO, data: np.ndarray, rate: int, media_type: str): if media_type == "ogg": io_buffer = pack_ogg(io_buffer, data, rate) elif media_type == "aac": io_buffer = pack_aac(io_buffer, data, rate) elif media_type == "wav": io_buffer = pack_wav(io_buffer, data, rate) else: io_buffer = pack_raw(io_buffer, data, rate) io_buffer.seek(0) return io_buffer # from https://huggingface.co/spaces/coqui/voice-chat-with-mistral/blob/main/app.py def wave_header_chunk(frame_input=b"", channels=1, sample_width=2, sample_rate=32000): # This will create a wave header then append the frame input # It should be first on a streaming wav file # Other frames better should not have it (else you will hear some artifacts each chunk start) wav_buf = BytesIO() with wave.open(wav_buf, "wb") as vfout: vfout.setnchannels(channels) vfout.setsampwidth(sample_width) vfout.setframerate(sample_rate) vfout.writeframes(frame_input) wav_buf.seek(0) return wav_buf.read() def handle_control(command: str): if command == "restart": os.execl(sys.executable, sys.executable, *argv) elif command == "exit": os.kill(os.getpid(), signal.SIGTERM) exit(0) def check_params(req: dict): text: str = req.get("text", "") text_lang: str = req.get("text_lang", "") ref_audio_path: str = req.get("ref_audio_path", "") streaming_mode: bool = req.get("streaming_mode", False) media_type: str = req.get("media_type", "wav") prompt_lang: str = req.get("prompt_lang", "") text_split_method: str = req.get("text_split_method", "cut5") if ref_audio_path in [None, ""]: return JSONResponse(status_code=400, content={"message": "ref_audio_path is required"}) if text in [None, ""]: return JSONResponse(status_code=400, content={"message": "text is required"}) if text_lang in [None, ""]: return JSONResponse(status_code=400, content={"message": "text_lang is required"}) elif text_lang not in tts_config.languages: return JSONResponse( status_code=400, content={"message": f"text_lang: {text_lang} is not supported in version {tts_config.version}"}, ) if prompt_lang in [None, ""]: return JSONResponse(status_code=400, content={"message": "prompt_lang is required"}) elif prompt_lang not in tts_config.languages: return JSONResponse( status_code=400, content={"message": f"prompt_lang: {prompt_lang} is not supported in version {tts_config.version}"}, ) if media_type not in ["wav", "raw", "ogg", "aac"]: return JSONResponse(status_code=400, content={"message": f"media_type: {media_type} is not supported"}) elif media_type == "ogg" and not streaming_mode: return JSONResponse(status_code=400, content={"message": "ogg format is not supported in non-streaming mode"}) if text_split_method not in cut_method_names: return JSONResponse( status_code=400, content={"message": f"text_split_method:{text_split_method} is not supported"} ) return None async def tts_handle(req: dict): """ Text to speech handler. Args: req (dict): { "text": "", # str.(required) text to be synthesized "text_lang: "", # str.(required) language of the text to be synthesized "ref_audio_path": "", # str.(required) reference audio path "aux_ref_audio_paths": [], # list.(optional) auxiliary reference audio paths for multi-speaker synthesis "prompt_text": "", # str.(optional) prompt text for the reference audio "prompt_lang": "", # str.(required) language of the prompt text for the reference audio "top_k": 5, # int. top k sampling "top_p": 1, # float. top p sampling "temperature": 1, # float. temperature for sampling "text_split_method": "cut5", # str. text split method, see text_segmentation_method.py for details. "batch_size": 1, # int. batch size for inference "batch_threshold": 0.75, # float. threshold for batch splitting. "split_bucket: True, # bool. whether to split the batch into multiple buckets. "speed_factor":1.0, # float. control the speed of the synthesized audio. "fragment_interval":0.3, # float. to control the interval of the audio fragment. "seed": -1, # int. random seed for reproducibility. "media_type": "wav", # str. media type of the output audio, support "wav", "raw", "ogg", "aac". "streaming_mode": False, # bool. whether to return a streaming response. "parallel_infer": True, # bool.(optional) whether to use parallel inference. "repetition_penalty": 1.35 # float.(optional) repetition penalty for T2S model. "sample_steps": 32, # int. number of sampling steps for VITS model V3. "super_sampling": False, # bool. whether to use super-sampling for audio when using VITS model V3. } returns: StreamingResponse: audio stream response. """ streaming_mode = req.get("streaming_mode", False) return_fragment = req.get("return_fragment", False) media_type = req.get("media_type", "wav") check_res = check_params(req) if check_res is not None: return check_res if streaming_mode or return_fragment: req["return_fragment"] = True try: tts_generator = tts_pipeline.run(req) if streaming_mode: def streaming_generator(tts_generator: Generator, media_type: str): if_frist_chunk = True for sr, chunk in tts_generator: if if_frist_chunk and media_type == "wav": yield wave_header_chunk(sample_rate=sr) media_type = "raw" if_frist_chunk = False yield pack_audio(BytesIO(), chunk, sr, media_type).getvalue() # _media_type = f"audio/{media_type}" if not (streaming_mode and media_type in ["wav", "raw"]) else f"audio/x-{media_type}" return StreamingResponse( streaming_generator( tts_generator, media_type, ), media_type=f"audio/{media_type}", ) else: sr, audio_data = next(tts_generator) audio_data = pack_audio(BytesIO(), audio_data, sr, media_type).getvalue() return Response(audio_data, media_type=f"audio/{media_type}") except Exception as e: return JSONResponse(status_code=400, content={"message": "tts failed", "Exception": str(e)}) @APP.get("/control") async def control(command: str = None): if command is None: return JSONResponse(status_code=400, content={"message": "command is required"}) handle_control(command) @APP.get("/tts") async def tts_get_endpoint( text: str = None, text_lang: str = None, ref_audio_path: str = None, aux_ref_audio_paths: list = None, prompt_lang: str = None, prompt_text: str = "", top_k: int = 5, top_p: float = 1, temperature: float = 1, text_split_method: str = "cut0", batch_size: int = 1, batch_threshold: float = 0.75, split_bucket: bool = True, speed_factor: float = 1.0, fragment_interval: float = 0.3, seed: int = -1, media_type: str = "wav", streaming_mode: bool = False, parallel_infer: bool = True, repetition_penalty: float = 1.35, sample_steps: int = 32, super_sampling: bool = False, ): req = { "text": text, "text_lang": text_lang, "ref_audio_path": ref_audio_path, "aux_ref_audio_paths": aux_ref_audio_paths, "prompt_text": prompt_text, "prompt_lang": prompt_lang, "top_k": top_k, "top_p": top_p, "temperature": temperature, "text_split_method": text_split_method, "batch_size": int(batch_size), "batch_threshold": float(batch_threshold), "speed_factor": float(speed_factor), "split_bucket": split_bucket, "fragment_interval": fragment_interval, "seed": seed, "media_type": media_type, "streaming_mode": streaming_mode, "parallel_infer": parallel_infer, "repetition_penalty": float(repetition_penalty), "sample_steps": int(sample_steps), "super_sampling": super_sampling, } return await tts_handle(req) @APP.post("/tts") async def tts_post_endpoint(request: TTS_Request): # DEBUG: Print received payload print(f"\n{'='*80}") print(f"[TTS DEBUG] Received request:") print(f" text: {request.text[:100] if len(request.text) > 100 else request.text}") # Truncate long text print(f" text_lang: {request.text_lang}") print(f" ref_audio_path: {request.ref_audio_path}") print(f" prompt_text: {request.prompt_text[:100] if request.prompt_text and len(request.prompt_text) > 100 else request.prompt_text}") print(f" prompt_lang: {request.prompt_lang}") print(f" top_k: {request.top_k}") print(f" top_p: {request.top_p}") print(f" temperature: {request.temperature}") print(f" text_split_method: {request.text_split_method}") print(f" batch_size: {request.batch_size}") print(f" speed_factor: {request.speed_factor}") print(f" streaming_mode: {request.streaming_mode}") print(f"{'='*80}\n") req = request.dict() return await tts_handle(req) @APP.get("/set_refer_audio") async def set_refer_aduio(refer_audio_path: str = None): try: tts_pipeline.set_ref_audio(refer_audio_path) except Exception as e: return JSONResponse(status_code=400, content={"message": "set refer audio failed", "Exception": str(e)}) return JSONResponse(status_code=200, content={"message": "success"}) # @APP.post("/set_refer_audio") # async def set_refer_aduio_post(audio_file: UploadFile = File(...)): # try: # # 检查文件类型,确保是音频文件 # if not audio_file.content_type.startswith("audio/"): # return JSONResponse(status_code=400, content={"message": "file type is not supported"}) # os.makedirs("uploaded_audio", exist_ok=True) # save_path = os.path.join("uploaded_audio", audio_file.filename) # # 保存音频文件到服务器上的一个目录 # with open(save_path , "wb") as buffer: # buffer.write(await audio_file.read()) # tts_pipeline.set_ref_audio(save_path) # except Exception as e: # return JSONResponse(status_code=400, content={"message": f"set refer audio failed", "Exception": str(e)}) # return JSONResponse(status_code=200, content={"message": "success"}) @APP.get("/set_gpt_weights") async def set_gpt_weights(weights_path: str = None): try: if weights_path in ["", None]: return JSONResponse(status_code=400, content={"message": "gpt weight path is required"}) tts_pipeline.init_t2s_weights(weights_path) except Exception as e: return JSONResponse(status_code=400, content={"message": "change gpt weight failed", "Exception": str(e)}) return JSONResponse(status_code=200, content={"message": "success"}) @APP.get("/set_sovits_weights") async def set_sovits_weights(weights_path: str = None): try: if weights_path in ["", None]: return JSONResponse(status_code=400, content={"message": "sovits weight path is required"}) tts_pipeline.init_vits_weights(weights_path) except Exception as e: return JSONResponse(status_code=400, content={"message": "change sovits weight failed", "Exception": str(e)}) return JSONResponse(status_code=200, content={"message": "success"}) async def execute_job_async(job_id: str, operation_func, *args, **kwargs): """ Execute a job asynchronously in background. Args: job_id: Unique job identifier operation_func: Function to execute (from webui.py) args, kwargs: Arguments for the operation function """ jobs[job_id]["status"] = "running" jobs[job_id]["started_at"] = datetime.now().isoformat() try: result = await asyncio.to_thread(operation_func, *args, **kwargs) if hasattr(result, '__iter__') and not isinstance(result, (str, dict)): final_result = None for item in result: final_result = item result = final_result jobs[job_id]["status"] = "completed" jobs[job_id]["result"] = result jobs[job_id]["completed_at"] = datetime.now().isoformat() except Exception as e: jobs[job_id]["status"] = "failed" jobs[job_id]["error"] = str(e) jobs[job_id]["traceback"] = traceback.format_exc() jobs[job_id]["failed_at"] = datetime.now().isoformat() @APP.get("/jobs/{job_id}") @APP.get("/job-status/{job_id}") # Alias for compatibility async def get_job_status(job_id: str): """ Get job status and result. Returns: { "job_id": str, "status": "queued" | "running" | "completed" | "failed", "result": Any (if completed), "error": str (if failed), "created_at": str, "started_at": str (if running/completed/failed), "completed_at": str (if completed), "failed_at": str (if failed) } """ if job_id not in jobs: return JSONResponse(status_code=404, content={"message": "job not found"}) job_data = jobs[job_id].copy() job_data["job_id"] = job_id return JSONResponse(status_code=200, content=job_data) async def execute_speech_slicing_direct(job_id: str, request: SpeechSlicingRequest): """ Execute speech slicing by directly calling slice_audio.py subprocess. Replaces webui.open_slice() to avoid Gradio dependency. """ jobs[job_id]["status"] = "running" jobs[job_id]["started_at"] = datetime.now().isoformat() try: # Prepare environment with PYTHONPATH env = os.environ.copy() env["PYTHONPATH"] = os.pathsep.join([now_dir, os.path.join(now_dir, "GPT_SoVITS")]) # Create processes for parallel slicing (n_parts) processes = [] for i_part in range(request.n_parts): cmd = [ python_exec, "tools/slice_audio.py", request.inp, request.opt_root, str(request.threshold), str(request.min_length), str(request.min_interval), str(request.hop_size), str(request.max_sil_kept), str(request._max), str(request.alpha), str(i_part), str(request.n_parts), ] print(f"[SPEECH SLICING] Executing: {' '.join(cmd)}") p = subprocess.Popen(cmd, env=env, cwd=now_dir) processes.append(p) # Wait for all processes to complete for p in processes: p.wait() # Check if any process failed exit_codes = [p.returncode for p in processes] if any(code != 0 for code in exit_codes): raise Exception(f"Speech slicing failed with exit codes: {exit_codes}") jobs[job_id]["status"] = "completed" jobs[job_id]["result"] = { "output_dir": request.opt_root, "file_count": request.n_parts } jobs[job_id]["completed_at"] = datetime.now().isoformat() except Exception as e: jobs[job_id]["status"] = "failed" jobs[job_id]["error"] = str(e) jobs[job_id]["traceback"] = traceback.format_exc() jobs[job_id]["failed_at"] = datetime.now().isoformat() @APP.post("/preprocessing/speech-slicing") async def speech_slicing_endpoint(request: SpeechSlicingRequest): """ Start speech slicing job. Directly executes tools/slice_audio.py (no webui dependency). """ # DEBUG: Print received payload print(f"\n{'='*80}") print(f"[SPEECH SLICING DEBUG] Received request:") print(f" inp: {request.inp}") print(f" opt_root: {request.opt_root}") print(f" threshold: {request.threshold}") print(f" min_length: {request.min_length}") print(f" min_interval: {request.min_interval}") print(f" hop_size: {request.hop_size}") print(f" max_sil_kept: {request.max_sil_kept}") print(f" _max: {request._max}") print(f" alpha: {request.alpha}") print(f" n_parts: {request.n_parts}") print(f"{'='*80}\n") job_id = str(uuid.uuid4()) jobs[job_id] = { "status": "queued", "operation": "speech_slicing", "created_at": datetime.now().isoformat() } try: asyncio.create_task(execute_speech_slicing_direct(job_id, request)) return JSONResponse(status_code=200, content={"job_id": job_id, "status": "queued"}) except Exception as e: jobs[job_id]["status"] = "failed" jobs[job_id]["error"] = str(e) return JSONResponse(status_code=500, content={"message": "failed to start job", "error": str(e)}) @APP.post("/preprocessing/stt") async def stt_endpoint(request: STTRequest): """ Start STT (Speech-to-Text) job. Wraps tools/asr/fasterwhisper_asr.execute_asr() """ # DEBUG: Print received payload print(f"\n{'='*80}") print(f"[STT DEBUG] Received STT request:") print(request) print(f"{'='*80}\n") job_id = str(uuid.uuid4()) jobs[job_id] = { "status": "queued", "operation": "stt", "created_at": datetime.now().isoformat() } try: from tools.asr.fasterwhisper_asr import execute_asr asyncio.create_task(execute_job_async( job_id, execute_asr, request.input_folder, request.output_folder, request.model_path, request.language, request.precision )) return JSONResponse(status_code=200, content={"job_id": job_id, "status": "queued"}) except Exception as e: print(f"[STT ERROR] Failed to start STT job: {str(e)}") jobs[job_id]["status"] = "failed" jobs[job_id]["error"] = str(e) return JSONResponse(status_code=500, content={"message": "failed to start job", "error": str(e)}) async def execute_dataset_formatting(job_id: str, request: DatasetFormattingRequest): """ Execute dataset formatting sequentially: open1a -> open1b -> open1c Directly executes subprocess (no webui dependency). """ jobs[job_id]["status"] = "running" jobs[job_id]["started_at"] = datetime.now().isoformat() jobs[job_id]["current_stage"] = "open1a" try: opt_dir = f"{exp_root}/{request.exp_name}" os.makedirs(opt_dir, exist_ok=True) # Parse GPU numbers gpu_names = request.gpu_numbers.split("-") all_parts = len(gpu_names) # Stage 1a: Get text features print(f"[DATASET FORMATTING] Starting open1a...") for i_part in range(all_parts): env = os.environ.copy() env.update({ "PYTHONPATH": os.pathsep.join([now_dir, os.path.join(now_dir, "GPT_SoVITS")]), "inp_text": request.inp_text, "inp_wav_dir": request.inp_wav_dir, "exp_name": request.exp_name, "opt_dir": opt_dir, "bert_pretrained_dir": request.bert_pretrained_dir, "i_part": str(i_part), "all_parts": str(all_parts), "_CUDA_VISIBLE_DEVICES": str(fix_gpu_number(gpu_names[i_part])), "is_half": str(is_half), }) cmd = [python_exec, "GPT_SoVITS/prepare_datasets/1-get-text.py"] print(f"[DATASET FORMATTING] Executing 1a part {i_part}: {' '.join(cmd)}") await asyncio.to_thread(subprocess.run, cmd, env=env, cwd=now_dir, check=True) # Merge text files from 1a stage opt = [] path_text = f"{opt_dir}/2-name2text.txt" for i_part in range(all_parts): text_path = f"{opt_dir}/2-name2text-{i_part}.txt" if os.path.exists(text_path): with open(text_path, "r", encoding="utf8") as f: opt += f.read().strip("\n").split("\n") os.remove(text_path) with open(path_text, "w", encoding="utf8") as f: f.write("\n".join(opt) + "\n") # Stage 1b: Get hubert features jobs[job_id]["current_stage"] = "open1b" print(f"[DATASET FORMATTING] Starting open1b...") sv_path = "GPT_SoVITS/pretrained_models/sv/pretrained_eres2netv2w24s4ep4.ckpt" for i_part in range(all_parts): env = os.environ.copy() env.update({ "PYTHONPATH": os.pathsep.join([now_dir, os.path.join(now_dir, "GPT_SoVITS")]), "inp_text": request.inp_text, "inp_wav_dir": request.inp_wav_dir, "exp_name": request.exp_name, "opt_dir": opt_dir, "cnhubert_base_dir": request.ssl_pretrained_dir, "sv_path": sv_path, "is_half": str(is_half), "i_part": str(i_part), "all_parts": str(all_parts), "_CUDA_VISIBLE_DEVICES": str(fix_gpu_number(gpu_names[i_part])), }) cmd = [python_exec, "GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py"] print(f"[DATASET FORMATTING] Executing 1b part {i_part}: {' '.join(cmd)}") await asyncio.to_thread(subprocess.run, cmd, env=env, cwd=now_dir, check=True) # For v2Pro version, also run 2-get-sv.py if "Pro" in request.version: for i_part in range(all_parts): env = os.environ.copy() env.update({ "PYTHONPATH": os.pathsep.join([now_dir, os.path.join(now_dir, "GPT_SoVITS")]), "i_part": str(i_part), "all_parts": str(all_parts), "_CUDA_VISIBLE_DEVICES": str(fix_gpu_number(gpu_names[i_part])), "exp_dir": opt_dir, "sv_path": sv_path, "is_half": str(is_half), }) cmd = [python_exec, "GPT_SoVITS/prepare_datasets/2-get-sv.py"] print(f"[DATASET FORMATTING] Executing 2-get-sv part {i_part}: {' '.join(cmd)}") await asyncio.to_thread(subprocess.run, cmd, env=env, cwd=now_dir, check=True) # Stage 1c: Get semantic features jobs[job_id]["current_stage"] = "open1c" print(f"[DATASET FORMATTING] Starting open1c...") config_file = ( "GPT_SoVITS/configs/s2.json" if request.version not in {"v2Pro", "v2ProPlus"} else f"GPT_SoVITS/configs/s2{request.version}.json" ) for i_part in range(all_parts): env = os.environ.copy() env.update({ "PYTHONPATH": os.pathsep.join([now_dir, os.path.join(now_dir, "GPT_SoVITS")]), "inp_text": request.inp_text, "exp_name": request.exp_name, "opt_dir": opt_dir, "pretrained_s2G": request.pretrained_s2G_path, "s2config_path": config_file, "is_half": str(is_half), "i_part": str(i_part), "all_parts": str(all_parts), "_CUDA_VISIBLE_DEVICES": str(fix_gpu_number(gpu_names[i_part])), }) cmd = [python_exec, "GPT_SoVITS/prepare_datasets/3-get-semantic.py"] print(f"[DATASET FORMATTING] Executing 1c part {i_part}: {' '.join(cmd)}") await asyncio.to_thread(subprocess.run, cmd, env=env, cwd=now_dir, check=True) # Merge semantic files (from open1c logic in webui.py) opt = ["item_name\tsemantic_audio"] path_semantic = f"{opt_dir}/6-name2semantic.tsv" for i_part in range(all_parts): semantic_path = f"{opt_dir}/6-name2semantic-{i_part}.tsv" if os.path.exists(semantic_path): with open(semantic_path, "r", encoding="utf8") as f: opt += f.read().strip("\n").split("\n") os.remove(semantic_path) with open(path_semantic, "w", encoding="utf8") as f: f.write("\n".join(opt)) jobs[job_id]["status"] = "completed" jobs[job_id]["result"] = { "exp_name": request.exp_name, "stages_completed": ["open1a", "open1b", "open1c"] } jobs[job_id]["completed_at"] = datetime.now().isoformat() except Exception as e: jobs[job_id]["status"] = "failed" jobs[job_id]["error"] = str(e) jobs[job_id]["traceback"] = traceback.format_exc() jobs[job_id]["failed_at"] = datetime.now().isoformat() @APP.post("/training/format-dataset") async def format_dataset_endpoint(request: DatasetFormattingRequest): """ Start dataset formatting job (open1a -> open1b -> open1c). Wraps webui.open1a(), open1b(), open1c() sequentially. """ # DEBUG: Print received payload print(f"\n{'='*80}") print(f"[DATASET FORMATTING DEBUG] Received request:") print(f" version: {request.version}") print(f" inp_text: {request.inp_text}") print(f" inp_wav_dir: {request.inp_wav_dir}") print(f" exp_name: {request.exp_name}") print(f" gpu_numbers1a: {request.gpu_numbers}") print(f" bert_pretrained_dir: {request.bert_pretrained_dir}") print(f" ssl_pretrained_dir: {request.ssl_pretrained_dir}") print(f" pretrained_s2G_path: {request.pretrained_s2G_path}") print(f"{'='*80}\n") job_id = str(uuid.uuid4()) jobs[job_id] = { "status": "queued", "operation": "format_dataset", "created_at": datetime.now().isoformat() } try: asyncio.create_task(execute_dataset_formatting(job_id, request)) return JSONResponse(status_code=200, content={"job_id": job_id, "status": "queued"}) except Exception as e: jobs[job_id]["status"] = "failed" jobs[job_id]["error"] = str(e) return JSONResponse(status_code=500, content={"message": "failed to start job", "error": str(e)}) async def execute_fine_tune_sovits_direct(job_id: str, request: FineTuneSoVITSRequest): """ Execute SoVITS fine-tuning by directly calling s2_train.py subprocess. Replaces webui.open1Ba() to avoid Gradio dependency. """ jobs[job_id]["status"] = "running" jobs[job_id]["started_at"] = datetime.now().isoformat() try: s2_dir = f"{exp_root}/{request.exp_name}" os.makedirs(f"{s2_dir}/logs_s2_{request.version}", exist_ok=True) # Load config template config_file = ( "GPT_SoVITS/configs/s2.json" if request.version not in {"v2Pro", "v2ProPlus"} else f"GPT_SoVITS/configs/s2{request.version}.json" ) with open(config_file) as f: data = json.loads(f.read()) # Update config with request parameters batch_size = request.batch_size if is_half == False: data["train"]["fp16_run"] = False batch_size = max(1, batch_size // 2) data["train"]["batch_size"] = batch_size data["train"]["epochs"] = request.total_epoch data["train"]["text_low_lr_rate"] = request.text_low_lr_rate data["train"]["pretrained_s2G"] = request.pretrained_s2G data["train"]["pretrained_s2D"] = request.pretrained_s2D data["train"]["if_save_latest"] = request.if_save_latest data["train"]["if_save_every_weights"] = request.if_save_every_weights data["train"]["save_every_epoch"] = request.save_every_epoch data["train"]["gpu_numbers"] = request.gpu_numbers1Ba data["train"]["grad_ckpt"] = request.if_grad_ckpt data["train"]["lora_rank"] = request.lora_rank data["model"]["version"] = request.version data["data"]["exp_dir"] = data["s2_ckpt_dir"] = s2_dir data["save_weight_dir"] = SoVITS_weight_version2root[request.version] data["name"] = request.exp_name data["version"] = request.version # Write temporary config tmp_config_path = f"{now_dir}/TEMP/tmp_s2.json" os.makedirs(f"{now_dir}/TEMP", exist_ok=True) with open(tmp_config_path, "w") as f: f.write(json.dumps(data)) # Prepare environment with PYTHONPATH env = os.environ.copy() env["PYTHONPATH"] = os.pathsep.join([now_dir, os.path.join(now_dir, "GPT_SoVITS")]) # Determine training script based on version if request.version in ["v1", "v2", "v2Pro", "v2ProPlus"]: cmd = [python_exec, "GPT_SoVITS/s2_train.py", "--config", tmp_config_path] else: cmd = [python_exec, "GPT_SoVITS/s2_train_v3_lora.py", "--config", tmp_config_path] print(f"[SOVITS FINE-TUNING] Executing: {' '.join(cmd)}") result = await asyncio.to_thread(subprocess.run, cmd, env=env, cwd=now_dir, check=True) # Find latest SoVITS checkpoint sovits_weights_dir = data["save_weight_dir"] latest_sovits_checkpoint = None if os.path.exists(sovits_weights_dir): import re pattern = re.compile(rf"^{re.escape(request.exp_name)}_e(\d+)_s(\d+)_l(\d+)\.pth$") checkpoints = [] for filename in os.listdir(sovits_weights_dir): match = pattern.match(filename) if match: epoch = int(match.group(1)) step = int(match.group(2)) checkpoints.append((epoch, step, filename)) if checkpoints: checkpoints.sort(reverse=True) latest_filename = checkpoints[0][2] latest_sovits_checkpoint = os.path.join(sovits_weights_dir, latest_filename) print(f"[SOVITS FINE-TUNING] Latest checkpoint: {latest_sovits_checkpoint}") jobs[job_id]["status"] = "completed" jobs[job_id]["result"] = { "exp_name": request.exp_name, "config_path": tmp_config_path, "checkpoint_path": latest_sovits_checkpoint, "sovits_checkpoint_path": latest_sovits_checkpoint } jobs[job_id]["completed_at"] = datetime.now().isoformat() except Exception as e: jobs[job_id]["status"] = "failed" jobs[job_id]["error"] = str(e) jobs[job_id]["traceback"] = traceback.format_exc() jobs[job_id]["failed_at"] = datetime.now().isoformat() @APP.post("/training/fine-tune-sovits") async def fine_tune_sovits_endpoint(request: FineTuneSoVITSRequest): """ Start SoVITS fine-tuning job. Directly executes s2_train.py (no webui dependency). """ # DEBUG: Print received payload print(f"\n{'='*80}") print(f"[SOVITS FINE-TUNING DEBUG] Received request:") print(f" version: {request.version}") print(f" batch_size: {request.batch_size}") print(f" total_epoch: {request.total_epoch}") print(f" exp_name: {request.exp_name}") print(f" text_low_lr_rate: {request.text_low_lr_rate}") print(f" if_save_latest: {request.if_save_latest}") print(f" if_save_every_weights: {request.if_save_every_weights}") print(f" save_every_epoch: {request.save_every_epoch}") print(f" gpu_numbers1Ba: {request.gpu_numbers1Ba}") print(f" pretrained_s2G: {request.pretrained_s2G}") print(f" pretrained_s2D: {request.pretrained_s2D}") print(f" if_grad_ckpt: {request.if_grad_ckpt}") print(f" lora_rank: {request.lora_rank}") print(f"{'='*80}\n") job_id = str(uuid.uuid4()) jobs[job_id] = { "status": "queued", "operation": "fine_tune_sovits", "created_at": datetime.now().isoformat() } try: asyncio.create_task(execute_fine_tune_sovits_direct(job_id, request)) return JSONResponse(status_code=200, content={"job_id": job_id, "status": "queued"}) except Exception as e: jobs[job_id]["status"] = "failed" jobs[job_id]["error"] = str(e) return JSONResponse(status_code=500, content={"message": "failed to start job", "error": str(e)}) @APP.post("/training/fine-tune-gpt") async def fine_tune_gpt_endpoint(request: FineTuneGPTRequest): """ Start GPT fine-tuning job. Wraps webui.open1Bb() """ # DEBUG: Print received payload print(f"\n{'='*80}") print(f"[GPT FINE-TUNING DEBUG] Received request:") print(f" batch_size: {request.batch_size}") print(f" total_epoch: {request.total_epoch}") print(f" exp_name: {request.exp_name}") print(f" if_dpo: {request.if_dpo}") print(f" if_save_latest: {request.if_save_latest}") print(f" if_save_every_weights: {request.if_save_every_weights}") print(f" save_every_epoch: {request.save_every_epoch}") print(f" gpu_numbers: {request.gpu_numbers}") print(f" pretrained_s1: {request.pretrained_s1}") print(f"{'='*80}\n") job_id = str(uuid.uuid4()) jobs[job_id] = { "status": "queued", "operation": "fine_tune_gpt", "created_at": datetime.now().isoformat() } try: asyncio.create_task(execute_fine_tune_gpt_direct(job_id, request)) return JSONResponse(status_code=200, content={"job_id": job_id, "status": "queued"}) except Exception as e: jobs[job_id]["status"] = "failed" jobs[job_id]["error"] = str(e) return JSONResponse(status_code=500, content={"message": "failed to start job", "error": str(e)}) async def execute_fine_tune_gpt_direct(job_id: str, request: FineTuneGPTRequest): """ Execute GPT fine-tuning by directly calling s1_train.py subprocess. Replaces webui.open1Bb() to avoid Gradio dependency. """ jobs[job_id]["status"] = "running" jobs[job_id]["started_at"] = datetime.now().isoformat() try: s1_dir = f"{exp_root}/{request.exp_name}" os.makedirs(f"{s1_dir}/logs_s1", exist_ok=True) # Determine version (from webui.py line 606) version = os.environ.get("version", "v4") # Load config template config_path = ( "GPT_SoVITS/configs/s1longer.yaml" if version == "v1" else "GPT_SoVITS/configs/s1longer-v2.yaml" ) with open(config_path) as f: data = yaml.load(f.read(), Loader=yaml.FullLoader) # Update config with request parameters batch_size = request.batch_size if is_half == False: data["train"]["precision"] = "32" batch_size = max(1, batch_size // 2) data["train"]["batch_size"] = batch_size data["train"]["epochs"] = request.total_epoch data["pretrained_s1"] = request.pretrained_s1 data["train"]["save_every_n_epoch"] = request.save_every_epoch data["train"]["if_save_every_weights"] = request.if_save_every_weights data["train"]["if_save_latest"] = request.if_save_latest data["train"]["if_dpo"] = request.if_dpo data["train"]["half_weights_save_dir"] = GPT_weight_version2root[version] data["train"]["exp_name"] = request.exp_name data["train_semantic_path"] = f"{s1_dir}/6-name2semantic.tsv" data["train_phoneme_path"] = f"{s1_dir}/2-name2text.txt" data["output_dir"] = f"{s1_dir}/logs_s1_{version}" # Set environment variables for GPU and PYTHONPATH env = os.environ.copy() env["PYTHONPATH"] = os.pathsep.join([now_dir, os.path.join(now_dir, "GPT_SoVITS")]) env["_CUDA_VISIBLE_DEVICES"] = fix_gpu_numbers(request.gpu_numbers.replace("-", ",")) env["hz"] = "25hz" # Write temporary config tmp_config_path = f"{now_dir}/TEMP/tmp_s1.yaml" os.makedirs(f"{now_dir}/TEMP", exist_ok=True) with open(tmp_config_path, "w") as f: f.write(yaml.dump(data, default_flow_style=False)) # Execute training cmd = [python_exec, "GPT_SoVITS/s1_train.py", "--config_file", tmp_config_path] print(f"[GPT FINE-TUNING] Executing: {' '.join(cmd)}") result = await asyncio.to_thread(subprocess.run, cmd, env=env, cwd=now_dir, check=True) # Find latest GPT checkpoint gpt_weights_dir = data["train"]["half_weights_save_dir"] latest_gpt_checkpoint = None if os.path.exists(gpt_weights_dir): import re pattern = re.compile(rf"^{re.escape(request.exp_name)}-e(\d+)\.ckpt$") checkpoints = [] for filename in os.listdir(gpt_weights_dir): match = pattern.match(filename) if match: epoch = int(match.group(1)) checkpoints.append((epoch, filename)) if checkpoints: checkpoints.sort(reverse=True) latest_filename = checkpoints[0][1] latest_gpt_checkpoint = os.path.join(gpt_weights_dir, latest_filename) print(f"[GPT FINE-TUNING] Latest checkpoint: {latest_gpt_checkpoint}") jobs[job_id]["status"] = "completed" jobs[job_id]["result"] = { "exp_name": request.exp_name, "config_path": tmp_config_path, "checkpoint_path": latest_gpt_checkpoint, "gpt_checkpoint_path": latest_gpt_checkpoint } jobs[job_id]["completed_at"] = datetime.now().isoformat() except Exception as e: jobs[job_id]["status"] = "failed" jobs[job_id]["error"] = str(e) jobs[job_id]["traceback"] = traceback.format_exc() jobs[job_id]["failed_at"] = datetime.now().isoformat() if __name__ == "__main__": try: if host == "None": # 在调用时使用 -a None 参数,可以让api监听双栈 host = None uvicorn.run(app=APP, host=host, port=port, workers=1) except Exception: traceback.print_exc() os.kill(os.getpid(), signal.SIGTERM) exit(0)