from packaging import version import torch from torch import nn, einsum import torch.nn.functional as F def exists(val): return val is not None def default(v, d): return v if exists(v) else d class Attend(nn.Module): def __init__( self, dropout = 0., flash = False, scale = None ): super().__init__() self.scale = scale self.dropout = dropout self.attn_dropout = nn.Dropout(dropout) self.flash = flash assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' def flash_attn(self, q, k, v): # _, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device if exists(self.scale): default_scale = q.shape[-1] ** -0.5 q = q * (self.scale / default_scale) # pytorch 2.0 flash attn: q, k, v, mask, dropout, softmax_scale # with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True): return F.scaled_dot_product_attention(q, k, v,dropout_p = self.dropout if self.training else 0.) def forward(self, q, k, v): """ einstein notation b - batch h - heads n, i, j - sequence length (base sequence length, source, target) d - feature dimension """ # q_len, k_len, device = q.shape[-2], k.shape[-2], q.device scale = default(self.scale, q.shape[-1] ** -0.5) if self.flash: return self.flash_attn(q, k, v) # similarity sim = einsum(f"b h i d, b h j d -> b h i j", q, k) * scale # attention attn = sim.softmax(dim=-1) attn = self.attn_dropout(attn) # aggregate values out = einsum(f"b h i j, b h j d -> b h i d", attn, v) return out