import torch from GPT_SoVITS.eres2net import kaldi from GPT_SoVITS.eres2net.ERes2NetV2 import ERes2NetV2 sv_path = "GPT_SoVITS/pretrained_models/sv/pretrained_eres2netv2w24s4ep4.ckpt" class SV: def __init__(self, device, is_half): pretrained_state = torch.load(sv_path, map_location="cpu") embedding_model = ERes2NetV2(baseWidth=24, scale=4, expansion=4) embedding_model.load_state_dict(pretrained_state) embedding_model.eval() self.embedding_model = embedding_model if is_half is False: self.embedding_model = self.embedding_model.to(device) else: self.embedding_model = self.embedding_model.half().to(device) self.is_half = is_half def compute_embedding(self, wav): if self.is_half is True: wav = wav.half() feat = torch.stack( [kaldi.fbank(wav0.unsqueeze(0), num_mel_bins=80, sample_frequency=16000, dither=0) for wav0 in wav] ) sv_emb = self.embedding_model.forward3(feat) return sv_emb