import traceback from collections import OrderedDict from time import time as ttime import shutil import os import torch from tools.i18n.i18n import I18nAuto i18n = I18nAuto() def my_save(fea, path): #####fix issue: torch.save doesn't support chinese path dir = os.path.dirname(path) name = os.path.basename(path) tmp_path = "%s.pth" % (ttime()) torch.save(fea, tmp_path) shutil.move(tmp_path, "%s/%s" % (dir, name)) """ 00:v1 01:v2 02:v3 03:v3lora """ from io import BytesIO def my_save2(fea, path): bio = BytesIO() torch.save(fea, bio) bio.seek(0) data = bio.getvalue() data = b"03" + data[2:] ###temp for v3lora only, todo with open(path, "wb") as f: f.write(data) def savee(ckpt, name, epoch, steps, hps, lora_rank=None): try: opt = OrderedDict() opt["weight"] = {} for key in ckpt.keys(): if "enc_q" in key: continue opt["weight"][key] = ckpt[key].half() opt["config"] = hps opt["info"] = "%sepoch_%siteration" % (epoch, steps) if lora_rank: opt["lora_rank"] = lora_rank my_save2(opt, "%s/%s.pth" % (hps.save_weight_dir, name)) else: my_save(opt, "%s/%s.pth" % (hps.save_weight_dir, name)) return "Success." except: return traceback.format_exc() head2version = { b"00": ["v1", "v1", False], b"01": ["v2", "v2", False], b"02": ["v2", "v3", False], b"03": ["v2", "v3", True], } hash_pretrained_dict = { "dc3c97e17592963677a4a1681f30c653": ["v2", "v2", False], # s2G488k.pth#sovits_v1_pretrained "43797be674a37c1c83ee81081941ed0f": ["v2", "v3", False], # s2Gv3.pth#sovits_v3_pretrained "6642b37f3dbb1f76882b69937c95a5f3": ["v2", "v2", False], # s2G2333K.pth#sovits_v2_pretrained } import hashlib def get_hash_from_file(sovits_path): with open(sovits_path, "rb") as f: data = f.read(8192) hash_md5 = hashlib.md5() hash_md5.update(data) return hash_md5.hexdigest() def get_sovits_version_from_path_fast(sovits_path): ###1-if it is pretrained sovits models, by hash hash = get_hash_from_file(sovits_path) if hash in hash_pretrained_dict: return hash_pretrained_dict[hash] ###2-new weights or old weights, by head with open(sovits_path, "rb") as f: version = f.read(2) if version != b"PK": return head2version[version] ###3-old weights, by file size if_lora_v3 = False size = os.path.getsize(sovits_path) """ v1weights:about 82942KB half thr:82978KB v2weights:about 83014KB v3weights:about 750MB """ if size < 82978 * 1024: model_version = version = "v1" elif size < 700 * 1024 * 1024: model_version = version = "v2" else: version = "v2" model_version = "v3" return version, model_version, if_lora_v3 def load_sovits_new(sovits_path): f = open(sovits_path, "rb") meta = f.read(2) if meta != "PK": data = b"PK" + f.read() bio = BytesIO() bio.write(data) bio.seek(0) return torch.load(bio, map_location="cpu", weights_only=False) return torch.load(sovits_path, map_location="cpu", weights_only=False)