# -*- coding: utf-8 -*- import sys import os inp_text = os.environ.get("inp_text") inp_wav_dir = os.environ.get("inp_wav_dir") exp_name = os.environ.get("exp_name") i_part = os.environ.get("i_part") all_parts = os.environ.get("all_parts") if "_CUDA_VISIBLE_DEVICES" in os.environ: os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] from feature_extractor import cnhubert opt_dir = os.environ.get("opt_dir") cnhubert.cnhubert_base_path = os.environ.get("cnhubert_base_dir") import torch is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available() import traceback import numpy as np from scipy.io import wavfile import librosa now_dir = os.getcwd() sys.path.append(now_dir) from tools.my_utils import load_audio, clean_path # from config import cnhubert_base_path # cnhubert.cnhubert_base_path=cnhubert_base_path # inp_text=sys.argv[1] # inp_wav_dir=sys.argv[2] # exp_name=sys.argv[3] # i_part=sys.argv[4] # all_parts=sys.argv[5] # os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[6] # cnhubert.cnhubert_base_path=sys.argv[7] # opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name from time import time as ttime import shutil def my_save(fea, path): #####fix issue: torch.save doesn't support chinese path dir = os.path.dirname(path) name = os.path.basename(path) # tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part) tmp_path = "%s%s.pth" % (ttime(), i_part) torch.save(fea, tmp_path) shutil.move(tmp_path, "%s/%s" % (dir, name)) hubert_dir = "%s/4-cnhubert" % (opt_dir) wav32dir = "%s/5-wav32k" % (opt_dir) os.makedirs(opt_dir, exist_ok=True) os.makedirs(hubert_dir, exist_ok=True) os.makedirs(wav32dir, exist_ok=True) maxx = 0.95 alpha = 0.5 if torch.cuda.is_available(): device = "cuda:0" # elif torch.backends.mps.is_available(): # device = "mps" else: device = "cpu" model = cnhubert.get_model() # is_half=False if is_half == True: model = model.half().to(device) else: model = model.to(device) nan_fails = [] def name2go(wav_name, wav_path): hubert_path = "%s/%s.pt" % (hubert_dir, wav_name) if os.path.exists(hubert_path): return tmp_audio = load_audio(wav_path, 32000) tmp_max = np.abs(tmp_audio).max() if tmp_max > 2.2: print("%s-filtered,%s" % (wav_name, tmp_max)) return tmp_audio32 = (tmp_audio / tmp_max * (maxx * alpha * 32768)) + ((1 - alpha) * 32768) * tmp_audio tmp_audio32b = (tmp_audio / tmp_max * (maxx * alpha * 1145.14)) + ((1 - alpha) * 1145.14) * tmp_audio tmp_audio = librosa.resample(tmp_audio32b, orig_sr=32000, target_sr=16000) # 不是重采样问题 tensor_wav16 = torch.from_numpy(tmp_audio) if is_half == True: tensor_wav16 = tensor_wav16.half().to(device) else: tensor_wav16 = tensor_wav16.to(device) ssl = model.model(tensor_wav16.unsqueeze(0))["last_hidden_state"].transpose(1, 2).cpu() # torch.Size([1, 768, 215]) if np.isnan(ssl.detach().numpy()).sum() != 0: nan_fails.append((wav_name, wav_path)) print("nan filtered:%s" % wav_name) return wavfile.write( "%s/%s" % (wav32dir, wav_name), 32000, tmp_audio32.astype("int16"), ) my_save(ssl, hubert_path) with open(inp_text, "r", encoding="utf8") as f: lines = f.read().strip("\n").split("\n") for line in lines[int(i_part) :: int(all_parts)]: try: # wav_name,text=line.split("\t") wav_name, spk_name, language, text = line.split("|") wav_name = clean_path(wav_name) if inp_wav_dir != "" and inp_wav_dir != None: wav_name = os.path.basename(wav_name) wav_path = "%s/%s" % (inp_wav_dir, wav_name) else: wav_path = wav_name wav_name = os.path.basename(wav_name) name2go(wav_name, wav_path) except: print(line, traceback.format_exc()) if len(nan_fails) > 0 and is_half == True: is_half = False model = model.float() for wav in nan_fails: try: name2go(wav[0], wav[1]) except: print(wav_name, traceback.format_exc())