from copy import deepcopy import math import os import sys import gc import random import traceback import time import torchaudio from tqdm import tqdm now_dir = os.getcwd() sys.path.append(now_dir) import ffmpeg import os from typing import List, Tuple, Union import numpy as np import torch import torch.nn.functional as F import yaml from transformers import AutoModelForMaskedLM, AutoTokenizer from tools.audio_sr import AP_BWE from AR.models.t2s_lightning_module import Text2SemanticLightningModule from feature_extractor.cnhubert import CNHubert from module.models import SynthesizerTrn, SynthesizerTrnV3 from peft import LoraConfig, get_peft_model import librosa from tools.i18n.i18n import I18nAuto, scan_language_list from tools.my_utils import load_audio from module.mel_processing import spectrogram_torch from TTS_infer_pack.text_segmentation_method import splits from TTS_infer_pack.TextPreprocessor import TextPreprocessor from BigVGAN.bigvgan import BigVGAN from module.mel_processing import mel_spectrogram_torch from process_ckpt import get_sovits_version_from_path_fast, load_sovits_new language = os.environ.get("language", "Auto") language = sys.argv[-1] if sys.argv[-1] in scan_language_list() else language i18n = I18nAuto(language=language) spec_min = -12 spec_max = 2 def norm_spec(x): return (x - spec_min) / (spec_max - spec_min) * 2 - 1 def denorm_spec(x): return (x + 1) / 2 * (spec_max - spec_min) + spec_min mel_fn = lambda x: mel_spectrogram_torch( x, **{ "n_fft": 1024, "win_size": 1024, "hop_size": 256, "num_mels": 100, "sampling_rate": 24000, "fmin": 0, "fmax": None, "center": False, }, ) def speed_change(input_audio: np.ndarray, speed: float, sr: int): # 将 NumPy 数组转换为原始 PCM 流 raw_audio = input_audio.astype(np.int16).tobytes() # 设置 ffmpeg 输入流 input_stream = ffmpeg.input("pipe:", format="s16le", acodec="pcm_s16le", ar=str(sr), ac=1) # 变速处理 output_stream = input_stream.filter("atempo", speed) # 输出流到管道 out, _ = output_stream.output("pipe:", format="s16le", acodec="pcm_s16le").run( input=raw_audio, capture_stdout=True, capture_stderr=True ) # 将管道输出解码为 NumPy 数组 processed_audio = np.frombuffer(out, np.int16) return processed_audio resample_transform_dict = {} def resample(audio_tensor, sr0, device): global resample_transform_dict if sr0 not in resample_transform_dict: resample_transform_dict[sr0] = torchaudio.transforms.Resample(sr0, 24000).to(device) return resample_transform_dict[sr0](audio_tensor) class DictToAttrRecursive(dict): def __init__(self, input_dict): super().__init__(input_dict) for key, value in input_dict.items(): if isinstance(value, dict): value = DictToAttrRecursive(value) self[key] = value setattr(self, key, value) def __getattr__(self, item): try: return self[item] except KeyError: raise AttributeError(f"Attribute {item} not found") def __setattr__(self, key, value): if isinstance(value, dict): value = DictToAttrRecursive(value) super(DictToAttrRecursive, self).__setitem__(key, value) super().__setattr__(key, value) def __delattr__(self, item): try: del self[item] except KeyError: raise AttributeError(f"Attribute {item} not found") class NO_PROMPT_ERROR(Exception): pass # configs/tts_infer.yaml """ custom: bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base device: cpu is_half: false t2s_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt vits_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth version: v2 default: bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base device: cpu is_half: false t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth version: v1 default_v2: bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base device: cpu is_half: false t2s_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt vits_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth version: v2 default_v3: bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base device: cpu is_half: false t2s_weights_path: GPT_SoVITS/pretrained_models/s1v3.ckpt vits_weights_path: GPT_SoVITS/pretrained_models/s2Gv3.pth version: v3 """ def set_seed(seed: int): seed = int(seed) seed = seed if seed != -1 else random.randint(0, 2**32 - 1) print(f"Set seed to {seed}") os.environ["PYTHONHASHSEED"] = str(seed) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) try: if torch.cuda.is_available(): torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) # torch.backends.cudnn.deterministic = True # torch.backends.cudnn.benchmark = False # torch.backends.cudnn.enabled = True # 开启后会影响精度 torch.backends.cuda.matmul.allow_tf32 = False torch.backends.cudnn.allow_tf32 = False except: pass return seed class TTS_Config: default_configs = { "v1": { "device": "cpu", "is_half": False, "version": "v1", "t2s_weights_path": "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt", "vits_weights_path": "GPT_SoVITS/pretrained_models/s2G488k.pth", "cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base", "bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large", }, "v2": { "device": "cpu", "is_half": False, "version": "v2", "t2s_weights_path": "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", "vits_weights_path": "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth", "cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base", "bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large", }, "v3": { "device": "cpu", "is_half": False, "version": "v3", "t2s_weights_path": "GPT_SoVITS/pretrained_models/s1v3.ckpt", "vits_weights_path": "GPT_SoVITS/pretrained_models/s2Gv3.pth", "cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base", "bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large", }, } configs: dict = None v1_languages: list = ["auto", "en", "zh", "ja", "all_zh", "all_ja"] v2_languages: list = ["auto", "auto_yue", "en", "zh", "ja", "yue", "ko", "all_zh", "all_ja", "all_yue", "all_ko"] languages: list = v2_languages # "all_zh",#全部按中文识别 # "en",#全部按英文识别#######不变 # "all_ja",#全部按日文识别 # "all_yue",#全部按中文识别 # "all_ko",#全部按韩文识别 # "zh",#按中英混合识别####不变 # "ja",#按日英混合识别####不变 # "yue",#按粤英混合识别####不变 # "ko",#按韩英混合识别####不变 # "auto",#多语种启动切分识别语种 # "auto_yue",#多语种启动切分识别语种 def __init__(self, configs: Union[dict, str] = None): # 设置默认配置文件路径 configs_base_path: str = "GPT_SoVITS/configs/" os.makedirs(configs_base_path, exist_ok=True) self.configs_path: str = os.path.join(configs_base_path, "tts_infer.yaml") if configs in ["", None]: if not os.path.exists(self.configs_path): self.save_configs() print(f"Create default config file at {self.configs_path}") configs: dict = deepcopy(self.default_configs) if isinstance(configs, str): self.configs_path = configs configs: dict = self._load_configs(self.configs_path) assert isinstance(configs, dict) version = configs.get("version", "v2").lower() assert version in ["v1", "v2", "v3"] self.default_configs[version] = configs.get(version, self.default_configs[version]) self.configs: dict = configs.get("custom", deepcopy(self.default_configs[version])) self.device = self.configs.get("device", torch.device("cpu")) if "cuda" in str(self.device) and not torch.cuda.is_available(): print("Warning: CUDA is not available, set device to CPU.") self.device = torch.device("cpu") self.is_half = self.configs.get("is_half", False) # if str(self.device) == "cpu" and self.is_half: # print(f"Warning: Half precision is not supported on CPU, set is_half to False.") # self.is_half = False self.version = version self.t2s_weights_path = self.configs.get("t2s_weights_path", None) self.vits_weights_path = self.configs.get("vits_weights_path", None) self.bert_base_path = self.configs.get("bert_base_path", None) self.cnhuhbert_base_path = self.configs.get("cnhuhbert_base_path", None) self.languages = self.v1_languages if self.version == "v1" else self.v2_languages self.is_v3_synthesizer: bool = False if (self.t2s_weights_path in [None, ""]) or (not os.path.exists(self.t2s_weights_path)): self.t2s_weights_path = self.default_configs[version]["t2s_weights_path"] print(f"fall back to default t2s_weights_path: {self.t2s_weights_path}") if (self.vits_weights_path in [None, ""]) or (not os.path.exists(self.vits_weights_path)): self.vits_weights_path = self.default_configs[version]["vits_weights_path"] print(f"fall back to default vits_weights_path: {self.vits_weights_path}") if (self.bert_base_path in [None, ""]) or (not os.path.exists(self.bert_base_path)): self.bert_base_path = self.default_configs[version]["bert_base_path"] print(f"fall back to default bert_base_path: {self.bert_base_path}") if (self.cnhuhbert_base_path in [None, ""]) or (not os.path.exists(self.cnhuhbert_base_path)): self.cnhuhbert_base_path = self.default_configs[version]["cnhuhbert_base_path"] print(f"fall back to default cnhuhbert_base_path: {self.cnhuhbert_base_path}") self.update_configs() self.max_sec = None self.hz: int = 50 self.semantic_frame_rate: str = "25hz" self.segment_size: int = 20480 self.filter_length: int = 2048 self.sampling_rate: int = 32000 self.hop_length: int = 640 self.win_length: int = 2048 self.n_speakers: int = 300 def _load_configs(self, configs_path: str) -> dict: if os.path.exists(configs_path): ... else: print(i18n("路径不存在,使用默认配置")) self.save_configs(configs_path) with open(configs_path, "r", encoding="utf-8") as f: configs = yaml.load(f, Loader=yaml.FullLoader) return configs def save_configs(self, configs_path: str = None) -> None: configs = deepcopy(self.default_configs) if self.configs is not None: configs["custom"] = self.update_configs() if configs_path is None: configs_path = self.configs_path with open(configs_path, "w") as f: yaml.dump(configs, f) def update_configs(self): self.config = { "device": str(self.device), "is_half": self.is_half, "version": self.version, "t2s_weights_path": self.t2s_weights_path, "vits_weights_path": self.vits_weights_path, "bert_base_path": self.bert_base_path, "cnhuhbert_base_path": self.cnhuhbert_base_path, } return self.config def update_version(self, version: str) -> None: self.version = version self.languages = self.v1_languages if self.version == "v1" else self.v2_languages def __str__(self): self.configs = self.update_configs() string = "TTS Config".center(100, "-") + "\n" for k, v in self.configs.items(): string += f"{str(k).ljust(20)}: {str(v)}\n" string += "-" * 100 + "\n" return string def __repr__(self): return self.__str__() def __hash__(self): return hash(self.configs_path) def __eq__(self, other): return isinstance(other, TTS_Config) and self.configs_path == other.configs_path class TTS: def __init__(self, configs: Union[dict, str, TTS_Config]): if isinstance(configs, TTS_Config): self.configs = configs else: self.configs: TTS_Config = TTS_Config(configs) self.t2s_model: Text2SemanticLightningModule = None self.vits_model: Union[SynthesizerTrn, SynthesizerTrnV3] = None self.bert_tokenizer: AutoTokenizer = None self.bert_model: AutoModelForMaskedLM = None self.cnhuhbert_model: CNHubert = None self.bigvgan_model: BigVGAN = None self.sr_model: AP_BWE = None self.sr_model_not_exist: bool = False self._init_models() self.text_preprocessor: TextPreprocessor = TextPreprocessor( self.bert_model, self.bert_tokenizer, self.configs.device ) self.prompt_cache: dict = { "ref_audio_path": None, "prompt_semantic": None, "refer_spec": [], "prompt_text": None, "prompt_lang": None, "phones": None, "bert_features": None, "norm_text": None, "aux_ref_audio_paths": [], } self.stop_flag: bool = False self.precision: torch.dtype = torch.float16 if self.configs.is_half else torch.float32 def _init_models( self, ): self.init_t2s_weights(self.configs.t2s_weights_path) self.init_vits_weights(self.configs.vits_weights_path) self.init_bert_weights(self.configs.bert_base_path) self.init_cnhuhbert_weights(self.configs.cnhuhbert_base_path) # self.enable_half_precision(self.configs.is_half) def init_cnhuhbert_weights(self, base_path: str): print(f"Loading CNHuBERT weights from {base_path}") self.cnhuhbert_model = CNHubert(base_path) self.cnhuhbert_model = self.cnhuhbert_model.eval() self.cnhuhbert_model = self.cnhuhbert_model.to(self.configs.device) if self.configs.is_half and str(self.configs.device) != "cpu": self.cnhuhbert_model = self.cnhuhbert_model.half() def init_bert_weights(self, base_path: str): print(f"Loading BERT weights from {base_path}") self.bert_tokenizer = AutoTokenizer.from_pretrained(base_path) self.bert_model = AutoModelForMaskedLM.from_pretrained(base_path) self.bert_model = self.bert_model.eval() self.bert_model = self.bert_model.to(self.configs.device) if self.configs.is_half and str(self.configs.device) != "cpu": self.bert_model = self.bert_model.half() def init_vits_weights(self, weights_path: str): self.configs.vits_weights_path = weights_path version, model_version, if_lora_v3 = get_sovits_version_from_path_fast(weights_path) path_sovits_v3 = self.configs.default_configs["v3"]["vits_weights_path"] if if_lora_v3 == True and os.path.exists(path_sovits_v3) == False: info = path_sovits_v3 + i18n("SoVITS V3 底模缺失,无法加载相应 LoRA 权重") raise FileExistsError(info) # dict_s2 = torch.load(weights_path, map_location=self.configs.device,weights_only=False) dict_s2 = load_sovits_new(weights_path) hps = dict_s2["config"] hps["model"]["semantic_frame_rate"] = "25hz" if "enc_p.text_embedding.weight" not in dict_s2["weight"]: hps["model"]["version"] = "v2" # v3model,v2sybomls elif dict_s2["weight"]["enc_p.text_embedding.weight"].shape[0] == 322: hps["model"]["version"] = "v1" else: hps["model"]["version"] = "v2" # version = hps["model"]["version"] self.configs.filter_length = hps["data"]["filter_length"] self.configs.segment_size = hps["train"]["segment_size"] self.configs.sampling_rate = hps["data"]["sampling_rate"] self.configs.hop_length = hps["data"]["hop_length"] self.configs.win_length = hps["data"]["win_length"] self.configs.n_speakers = hps["data"]["n_speakers"] self.configs.semantic_frame_rate = hps["model"]["semantic_frame_rate"] kwargs = hps["model"] # print(f"self.configs.sampling_rate:{self.configs.sampling_rate}") self.configs.update_version(model_version) # print(f"model_version:{model_version}") # print(f'hps["model"]["version"]:{hps["model"]["version"]}') if model_version != "v3": vits_model = SynthesizerTrn( self.configs.filter_length // 2 + 1, self.configs.segment_size // self.configs.hop_length, n_speakers=self.configs.n_speakers, **kwargs, ) if hasattr(vits_model, "enc_q"): del vits_model.enc_q self.configs.is_v3_synthesizer = False else: vits_model = SynthesizerTrnV3( self.configs.filter_length // 2 + 1, self.configs.segment_size // self.configs.hop_length, n_speakers=self.configs.n_speakers, **kwargs, ) self.configs.is_v3_synthesizer = True self.init_bigvgan() if if_lora_v3 == False: print( f"Loading VITS weights from {weights_path}. {vits_model.load_state_dict(dict_s2['weight'], strict=False)}" ) else: print( f"Loading VITS pretrained weights from {weights_path}. {vits_model.load_state_dict(load_sovits_new(path_sovits_v3)['weight'], strict=False)}" ) lora_rank = dict_s2["lora_rank"] lora_config = LoraConfig( target_modules=["to_k", "to_q", "to_v", "to_out.0"], r=lora_rank, lora_alpha=lora_rank, init_lora_weights=True, ) vits_model.cfm = get_peft_model(vits_model.cfm, lora_config) print( f"Loading LoRA weights from {weights_path}. {vits_model.load_state_dict(dict_s2['weight'], strict=False)}" ) vits_model.cfm = vits_model.cfm.merge_and_unload() vits_model = vits_model.to(self.configs.device) vits_model = vits_model.eval() self.vits_model = vits_model if self.configs.is_half and str(self.configs.device) != "cpu": self.vits_model = self.vits_model.half() def init_t2s_weights(self, weights_path: str): print(f"Loading Text2Semantic weights from {weights_path}") self.configs.t2s_weights_path = weights_path self.configs.save_configs() self.configs.hz = 50 dict_s1 = torch.load(weights_path, map_location=self.configs.device) config = dict_s1["config"] self.configs.max_sec = config["data"]["max_sec"] t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) t2s_model.load_state_dict(dict_s1["weight"]) t2s_model = t2s_model.to(self.configs.device) t2s_model = t2s_model.eval() self.t2s_model = t2s_model if self.configs.is_half and str(self.configs.device) != "cpu": self.t2s_model = self.t2s_model.half() def init_bigvgan(self): if self.bigvgan_model is not None: return self.bigvgan_model = BigVGAN.from_pretrained( "%s/GPT_SoVITS/pretrained_models/models--nvidia--bigvgan_v2_24khz_100band_256x" % (now_dir,), use_cuda_kernel=False, ) # if True, RuntimeError: Ninja is required to load C++ extensions # remove weight norm in the model and set to eval mode self.bigvgan_model.remove_weight_norm() self.bigvgan_model = self.bigvgan_model.eval() if self.configs.is_half == True: self.bigvgan_model = self.bigvgan_model.half().to(self.configs.device) else: self.bigvgan_model = self.bigvgan_model.to(self.configs.device) def init_sr_model(self): if self.sr_model is not None: return try: self.sr_model: AP_BWE = AP_BWE(self.configs.device, DictToAttrRecursive) self.sr_model_not_exist = False except FileNotFoundError: print(i18n("你没有下载超分模型的参数,因此不进行超分。如想超分请先参照教程把文件下载好")) self.sr_model_not_exist = True def enable_half_precision(self, enable: bool = True, save: bool = True): """ To enable half precision for the TTS model. Args: enable: bool, whether to enable half precision. """ if str(self.configs.device) == "cpu" and enable: print("Half precision is not supported on CPU.") return self.configs.is_half = enable self.precision = torch.float16 if enable else torch.float32 if save: self.configs.save_configs() if enable: if self.t2s_model is not None: self.t2s_model = self.t2s_model.half() if self.vits_model is not None: self.vits_model = self.vits_model.half() if self.bert_model is not None: self.bert_model = self.bert_model.half() if self.cnhuhbert_model is not None: self.cnhuhbert_model = self.cnhuhbert_model.half() if self.bigvgan_model is not None: self.bigvgan_model = self.bigvgan_model.half() else: if self.t2s_model is not None: self.t2s_model = self.t2s_model.float() if self.vits_model is not None: self.vits_model = self.vits_model.float() if self.bert_model is not None: self.bert_model = self.bert_model.float() if self.cnhuhbert_model is not None: self.cnhuhbert_model = self.cnhuhbert_model.float() if self.bigvgan_model is not None: self.bigvgan_model = self.bigvgan_model.float() def set_device(self, device: torch.device, save: bool = True): """ To set the device for all models. Args: device: torch.device, the device to use for all models. """ self.configs.device = device if save: self.configs.save_configs() if self.t2s_model is not None: self.t2s_model = self.t2s_model.to(device) if self.vits_model is not None: self.vits_model = self.vits_model.to(device) if self.bert_model is not None: self.bert_model = self.bert_model.to(device) if self.cnhuhbert_model is not None: self.cnhuhbert_model = self.cnhuhbert_model.to(device) if self.bigvgan_model is not None: self.bigvgan_model = self.bigvgan_model.to(device) if self.sr_model is not None: self.sr_model = self.sr_model.to(device) def set_ref_audio(self, ref_audio_path: str): """ To set the reference audio for the TTS model, including the prompt_semantic and refer_spepc. Args: ref_audio_path: str, the path of the reference audio. """ self._set_prompt_semantic(ref_audio_path) self._set_ref_spec(ref_audio_path) self._set_ref_audio_path(ref_audio_path) def _set_ref_audio_path(self, ref_audio_path): self.prompt_cache["ref_audio_path"] = ref_audio_path def _set_ref_spec(self, ref_audio_path): spec = self._get_ref_spec(ref_audio_path) if self.prompt_cache["refer_spec"] in [[], None]: self.prompt_cache["refer_spec"] = [spec] else: self.prompt_cache["refer_spec"][0] = spec def _get_ref_spec(self, ref_audio_path): raw_audio, raw_sr = torchaudio.load(ref_audio_path) raw_audio = raw_audio.to(self.configs.device).float() self.prompt_cache["raw_audio"] = raw_audio self.prompt_cache["raw_sr"] = raw_sr audio = load_audio(ref_audio_path, int(self.configs.sampling_rate)) audio = torch.FloatTensor(audio) maxx = audio.abs().max() if maxx > 1: audio /= min(2, maxx) audio_norm = audio audio_norm = audio_norm.unsqueeze(0) spec = spectrogram_torch( audio_norm, self.configs.filter_length, self.configs.sampling_rate, self.configs.hop_length, self.configs.win_length, center=False, ) spec = spec.to(self.configs.device) if self.configs.is_half: spec = spec.half() return spec def _set_prompt_semantic(self, ref_wav_path: str): zero_wav = np.zeros( int(self.configs.sampling_rate * 0.3), dtype=np.float16 if self.configs.is_half else np.float32, ) with torch.no_grad(): wav16k, sr = librosa.load(ref_wav_path, sr=16000) if wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000: raise OSError(i18n("参考音频在3~10秒范围外,请更换!")) wav16k = torch.from_numpy(wav16k) zero_wav_torch = torch.from_numpy(zero_wav) wav16k = wav16k.to(self.configs.device) zero_wav_torch = zero_wav_torch.to(self.configs.device) if self.configs.is_half: wav16k = wav16k.half() zero_wav_torch = zero_wav_torch.half() wav16k = torch.cat([wav16k, zero_wav_torch]) hubert_feature = self.cnhuhbert_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose( 1, 2 ) # .float() codes = self.vits_model.extract_latent(hubert_feature) prompt_semantic = codes[0, 0].to(self.configs.device) self.prompt_cache["prompt_semantic"] = prompt_semantic def batch_sequences(self, sequences: List[torch.Tensor], axis: int = 0, pad_value: int = 0, max_length: int = None): seq = sequences[0] ndim = seq.dim() if axis < 0: axis += ndim dtype: torch.dtype = seq.dtype pad_value = torch.tensor(pad_value, dtype=dtype) seq_lengths = [seq.shape[axis] for seq in sequences] if max_length is None: max_length = max(seq_lengths) else: max_length = max(seq_lengths) if max_length < max(seq_lengths) else max_length padded_sequences = [] for seq, length in zip(sequences, seq_lengths): padding = [0] * axis + [0, max_length - length] + [0] * (ndim - axis - 1) padded_seq = torch.nn.functional.pad(seq, padding, value=pad_value) padded_sequences.append(padded_seq) batch = torch.stack(padded_sequences) return batch def to_batch( self, data: list, prompt_data: dict = None, batch_size: int = 5, threshold: float = 0.75, split_bucket: bool = True, device: torch.device = torch.device("cpu"), precision: torch.dtype = torch.float32, ): _data: list = [] index_and_len_list = [] for idx, item in enumerate(data): norm_text_len = len(item["norm_text"]) index_and_len_list.append([idx, norm_text_len]) batch_index_list = [] if split_bucket: index_and_len_list.sort(key=lambda x: x[1]) index_and_len_list = np.array(index_and_len_list, dtype=np.int64) batch_index_list_len = 0 pos = 0 while pos < index_and_len_list.shape[0]: # batch_index_list.append(index_and_len_list[pos:min(pos+batch_size,len(index_and_len_list))]) pos_end = min(pos + batch_size, index_and_len_list.shape[0]) while pos < pos_end: batch = index_and_len_list[pos:pos_end, 1].astype(np.float32) score = batch[(pos_end - pos) // 2] / (batch.mean() + 1e-8) if (score >= threshold) or (pos_end - pos == 1): batch_index = index_and_len_list[pos:pos_end, 0].tolist() batch_index_list_len += len(batch_index) batch_index_list.append(batch_index) pos = pos_end break pos_end = pos_end - 1 assert batch_index_list_len == len(data) else: for i in range(len(data)): if i % batch_size == 0: batch_index_list.append([]) batch_index_list[-1].append(i) for batch_idx, index_list in enumerate(batch_index_list): item_list = [data[idx] for idx in index_list] phones_list = [] phones_len_list = [] # bert_features_list = [] all_phones_list = [] all_phones_len_list = [] all_bert_features_list = [] norm_text_batch = [] all_bert_max_len = 0 all_phones_max_len = 0 for item in item_list: if prompt_data is not None: all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1).to( dtype=precision, device=device ) all_phones = torch.LongTensor(prompt_data["phones"] + item["phones"]).to(device) phones = torch.LongTensor(item["phones"]).to(device) # norm_text = prompt_data["norm_text"]+item["norm_text"] else: all_bert_features = item["bert_features"].to(dtype=precision, device=device) phones = torch.LongTensor(item["phones"]).to(device) all_phones = phones # norm_text = item["norm_text"] all_bert_max_len = max(all_bert_max_len, all_bert_features.shape[-1]) all_phones_max_len = max(all_phones_max_len, all_phones.shape[-1]) phones_list.append(phones) phones_len_list.append(phones.shape[-1]) all_phones_list.append(all_phones) all_phones_len_list.append(all_phones.shape[-1]) all_bert_features_list.append(all_bert_features) norm_text_batch.append(item["norm_text"]) phones_batch = phones_list all_phones_batch = all_phones_list all_bert_features_batch = all_bert_features_list max_len = max(all_bert_max_len, all_phones_max_len) # phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len) #### 直接对phones和bert_features进行pad。(padding策略会影响T2S模型生成的结果,但不直接影响复读概率。影响复读概率的主要因素是mask的策略) # all_phones_batch = self.batch_sequences(all_phones_list, axis=0, pad_value=0, max_length=max_len) # all_bert_features_batch = all_bert_features_list # all_bert_features_batch = torch.zeros((len(all_bert_features_list), 1024, max_len), dtype=precision, device=device) # for idx, item in enumerate(all_bert_features_list): # all_bert_features_batch[idx, :, : item.shape[-1]] = item # #### 先对phones进行embedding、对bert_features进行project,再pad到相同长度,(padding策略会影响T2S模型生成的结果,但不直接影响复读概率。影响复读概率的主要因素是mask的策略) # all_phones_list = [self.t2s_model.model.ar_text_embedding(item.to(self.t2s_model.device)) for item in all_phones_list] # all_phones_list = [F.pad(item,(0,0,0,max_len-item.shape[0]),value=0) for item in all_phones_list] # all_phones_batch = torch.stack(all_phones_list, dim=0) # all_bert_features_list = [self.t2s_model.model.bert_proj(item.to(self.t2s_model.device).transpose(0, 1)) for item in all_bert_features_list] # all_bert_features_list = [F.pad(item,(0,0,0,max_len-item.shape[0]), value=0) for item in all_bert_features_list] # all_bert_features_batch = torch.stack(all_bert_features_list, dim=0) batch = { "phones": phones_batch, "phones_len": torch.LongTensor(phones_len_list).to(device), "all_phones": all_phones_batch, "all_phones_len": torch.LongTensor(all_phones_len_list).to(device), "all_bert_features": all_bert_features_batch, "norm_text": norm_text_batch, "max_len": max_len, } _data.append(batch) return _data, batch_index_list def recovery_order(self, data: list, batch_index_list: list) -> list: """ Recovery the order of the audio according to the batch_index_list. Args: data (List[list(torch.Tensor)]): the out of order audio . batch_index_list (List[list[int]]): the batch index list. Returns: list (List[torch.Tensor]): the data in the original order. """ length = len(sum(batch_index_list, [])) _data = [None] * length for i, index_list in enumerate(batch_index_list): for j, index in enumerate(index_list): _data[index] = data[i][j] return _data def stop( self, ): """ Stop the inference process. """ self.stop_flag = True @torch.no_grad() def run(self, inputs: dict): """ Text to speech inference. Args: inputs (dict): { "text": "", # str.(required) text to be synthesized "text_lang: "", # str.(required) language of the text to be synthesized "ref_audio_path": "", # str.(required) reference audio path "aux_ref_audio_paths": [], # list.(optional) auxiliary reference audio paths for multi-speaker tone fusion "prompt_text": "", # str.(optional) prompt text for the reference audio "prompt_lang": "", # str.(required) language of the prompt text for the reference audio "top_k": 5, # int. top k sampling "top_p": 1, # float. top p sampling "temperature": 1, # float. temperature for sampling "text_split_method": "cut0", # str. text split method, see text_segmentation_method.py for details. "batch_size": 1, # int. batch size for inference "batch_threshold": 0.75, # float. threshold for batch splitting. "split_bucket: True, # bool. whether to split the batch into multiple buckets. "return_fragment": False, # bool. step by step return the audio fragment. "speed_factor":1.0, # float. control the speed of the synthesized audio. "fragment_interval":0.3, # float. to control the interval of the audio fragment. "seed": -1, # int. random seed for reproducibility. "parallel_infer": True, # bool. whether to use parallel inference. "repetition_penalty": 1.35 # float. repetition penalty for T2S model. "sample_steps": 32, # int. number of sampling steps for VITS model V3. "super_sampling": False, # bool. whether to use super-sampling for audio when using VITS model V3. } returns: Tuple[int, np.ndarray]: sampling rate and audio data. """ ########## variables initialization ########### self.stop_flag: bool = False text: str = inputs.get("text", "") text_lang: str = inputs.get("text_lang", "") ref_audio_path: str = inputs.get("ref_audio_path", "") aux_ref_audio_paths: list = inputs.get("aux_ref_audio_paths", []) prompt_text: str = inputs.get("prompt_text", "") prompt_lang: str = inputs.get("prompt_lang", "") top_k: int = inputs.get("top_k", 5) top_p: float = inputs.get("top_p", 1) temperature: float = inputs.get("temperature", 1) text_split_method: str = inputs.get("text_split_method", "cut0") batch_size = inputs.get("batch_size", 1) batch_threshold = inputs.get("batch_threshold", 0.75) speed_factor = inputs.get("speed_factor", 1.0) split_bucket = inputs.get("split_bucket", True) return_fragment = inputs.get("return_fragment", False) fragment_interval = inputs.get("fragment_interval", 0.3) seed = inputs.get("seed", -1) seed = -1 if seed in ["", None] else seed actual_seed = set_seed(seed) parallel_infer = inputs.get("parallel_infer", True) repetition_penalty = inputs.get("repetition_penalty", 1.35) sample_steps = inputs.get("sample_steps", 32) super_sampling = inputs.get("super_sampling", False) if parallel_infer: print(i18n("并行推理模式已开启")) self.t2s_model.model.infer_panel = self.t2s_model.model.infer_panel_batch_infer else: print(i18n("并行推理模式已关闭")) self.t2s_model.model.infer_panel = self.t2s_model.model.infer_panel_naive_batched if return_fragment: print(i18n("分段返回模式已开启")) if split_bucket: split_bucket = False print(i18n("分段返回模式不支持分桶处理,已自动关闭分桶处理")) if split_bucket and speed_factor == 1.0 and not (self.configs.is_v3_synthesizer and parallel_infer): print(i18n("分桶处理模式已开启")) elif speed_factor != 1.0: print(i18n("语速调节不支持分桶处理,已自动关闭分桶处理")) split_bucket = False elif self.configs.is_v3_synthesizer and parallel_infer: print(i18n("当开启并行推理模式时,SoVits V3模型不支持分桶处理,已自动关闭分桶处理")) split_bucket = False else: print(i18n("分桶处理模式已关闭")) if fragment_interval < 0.01: fragment_interval = 0.01 print(i18n("分段间隔过小,已自动设置为0.01")) no_prompt_text = False if prompt_text in [None, ""]: no_prompt_text = True assert text_lang in self.configs.languages if not no_prompt_text: assert prompt_lang in self.configs.languages if no_prompt_text and self.configs.is_v3_synthesizer: raise NO_PROMPT_ERROR("prompt_text cannot be empty when using SoVITS_V3") if ref_audio_path in [None, ""] and ( (self.prompt_cache["prompt_semantic"] is None) or (self.prompt_cache["refer_spec"] in [None, []]) ): raise ValueError( "ref_audio_path cannot be empty, when the reference audio is not set using set_ref_audio()" ) ###### setting reference audio and prompt text preprocessing ######## t0 = time.perf_counter() if (ref_audio_path is not None) and (ref_audio_path != self.prompt_cache["ref_audio_path"]): if not os.path.exists(ref_audio_path): raise ValueError(f"{ref_audio_path} not exists") self.set_ref_audio(ref_audio_path) aux_ref_audio_paths = aux_ref_audio_paths if aux_ref_audio_paths is not None else [] paths = set(aux_ref_audio_paths) & set(self.prompt_cache["aux_ref_audio_paths"]) if not (len(list(paths)) == len(aux_ref_audio_paths) == len(self.prompt_cache["aux_ref_audio_paths"])): self.prompt_cache["aux_ref_audio_paths"] = aux_ref_audio_paths self.prompt_cache["refer_spec"] = [self.prompt_cache["refer_spec"][0]] for path in aux_ref_audio_paths: if path in [None, ""]: continue if not os.path.exists(path): print(i18n("音频文件不存在,跳过:"), path) continue self.prompt_cache["refer_spec"].append(self._get_ref_spec(path)) if not no_prompt_text: prompt_text = prompt_text.strip("\n") if prompt_text[-1] not in splits: prompt_text += "。" if prompt_lang != "en" else "." print(i18n("实际输入的参考文本:"), prompt_text) if self.prompt_cache["prompt_text"] != prompt_text: phones, bert_features, norm_text = self.text_preprocessor.segment_and_extract_feature_for_text( prompt_text, prompt_lang, self.configs.version ) self.prompt_cache["prompt_text"] = prompt_text self.prompt_cache["prompt_lang"] = prompt_lang self.prompt_cache["phones"] = phones self.prompt_cache["bert_features"] = bert_features self.prompt_cache["norm_text"] = norm_text ###### text preprocessing ######## t1 = time.perf_counter() data: list = None if not return_fragment: data = self.text_preprocessor.preprocess(text, text_lang, text_split_method, self.configs.version) if len(data) == 0: yield 16000, np.zeros(int(16000), dtype=np.int16) return batch_index_list: list = None data, batch_index_list = self.to_batch( data, prompt_data=self.prompt_cache if not no_prompt_text else None, batch_size=batch_size, threshold=batch_threshold, split_bucket=split_bucket, device=self.configs.device, precision=self.precision, ) else: print(f"############ {i18n('切分文本')} ############") texts = self.text_preprocessor.pre_seg_text(text, text_lang, text_split_method) data = [] for i in range(len(texts)): if i % batch_size == 0: data.append([]) data[-1].append(texts[i]) def make_batch(batch_texts): batch_data = [] print(f"############ {i18n('提取文本Bert特征')} ############") for text in tqdm(batch_texts): phones, bert_features, norm_text = self.text_preprocessor.segment_and_extract_feature_for_text( text, text_lang, self.configs.version ) if phones is None: continue res = { "phones": phones, "bert_features": bert_features, "norm_text": norm_text, } batch_data.append(res) if len(batch_data) == 0: return None batch, _ = self.to_batch( batch_data, prompt_data=self.prompt_cache if not no_prompt_text else None, batch_size=batch_size, threshold=batch_threshold, split_bucket=False, device=self.configs.device, precision=self.precision, ) return batch[0] t2 = time.perf_counter() try: print("############ 推理 ############") ###### inference ###### t_34 = 0.0 t_45 = 0.0 audio = [] output_sr = self.configs.sampling_rate if not self.configs.is_v3_synthesizer else 24000 for item in data: t3 = time.perf_counter() if return_fragment: item = make_batch(item) if item is None: continue batch_phones: List[torch.LongTensor] = item["phones"] # batch_phones:torch.LongTensor = item["phones"] batch_phones_len: torch.LongTensor = item["phones_len"] all_phoneme_ids: torch.LongTensor = item["all_phones"] all_phoneme_lens: torch.LongTensor = item["all_phones_len"] all_bert_features: torch.LongTensor = item["all_bert_features"] norm_text: str = item["norm_text"] max_len = item["max_len"] print(i18n("前端处理后的文本(每句):"), norm_text) if no_prompt_text: prompt = None else: prompt = ( self.prompt_cache["prompt_semantic"].expand(len(all_phoneme_ids), -1).to(self.configs.device) ) print(f"############ {i18n('预测语义Token')} ############") pred_semantic_list, idx_list = self.t2s_model.model.infer_panel( all_phoneme_ids, all_phoneme_lens, prompt, all_bert_features, # prompt_phone_len=ph_offset, top_k=top_k, top_p=top_p, temperature=temperature, early_stop_num=self.configs.hz * self.configs.max_sec, max_len=max_len, repetition_penalty=repetition_penalty, ) t4 = time.perf_counter() t_34 += t4 - t3 refer_audio_spec: torch.Tensor = [ item.to(dtype=self.precision, device=self.configs.device) for item in self.prompt_cache["refer_spec"] ] batch_audio_fragment = [] # ## vits并行推理 method 1 # pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)] # pred_semantic_len = torch.LongTensor([item.shape[0] for item in pred_semantic_list]).to(self.configs.device) # pred_semantic = self.batch_sequences(pred_semantic_list, axis=0, pad_value=0).unsqueeze(0) # max_len = 0 # for i in range(0, len(batch_phones)): # max_len = max(max_len, batch_phones[i].shape[-1]) # batch_phones = self.batch_sequences(batch_phones, axis=0, pad_value=0, max_length=max_len) # batch_phones = batch_phones.to(self.configs.device) # batch_audio_fragment = (self.vits_model.batched_decode( # pred_semantic, pred_semantic_len, batch_phones, batch_phones_len,refer_audio_spec # )) print(f"############ {i18n('合成音频')} ############") if not self.configs.is_v3_synthesizer: if speed_factor == 1.0: print(f"{i18n('并行合成中')}...") # ## vits并行推理 method 2 pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)] upsample_rate = math.prod(self.vits_model.upsample_rates) audio_frag_idx = [ pred_semantic_list[i].shape[0] * 2 * upsample_rate for i in range(0, len(pred_semantic_list)) ] audio_frag_end_idx = [sum(audio_frag_idx[: i + 1]) for i in range(0, len(audio_frag_idx))] all_pred_semantic = ( torch.cat(pred_semantic_list).unsqueeze(0).unsqueeze(0).to(self.configs.device) ) _batch_phones = torch.cat(batch_phones).unsqueeze(0).to(self.configs.device) _batch_audio_fragment = self.vits_model.decode( all_pred_semantic, _batch_phones, refer_audio_spec, speed=speed_factor ).detach()[0, 0, :] audio_frag_end_idx.insert(0, 0) batch_audio_fragment = [ _batch_audio_fragment[audio_frag_end_idx[i - 1] : audio_frag_end_idx[i]] for i in range(1, len(audio_frag_end_idx)) ] else: # ## vits串行推理 for i, idx in enumerate(tqdm(idx_list)): phones = batch_phones[i].unsqueeze(0).to(self.configs.device) _pred_semantic = ( pred_semantic_list[i][-idx:].unsqueeze(0).unsqueeze(0) ) # .unsqueeze(0)#mq要多unsqueeze一次 audio_fragment = self.vits_model.decode( _pred_semantic, phones, refer_audio_spec, speed=speed_factor ).detach()[0, 0, :] batch_audio_fragment.append(audio_fragment) ###试试重建不带上prompt部分 else: if parallel_infer: print(f"{i18n('并行合成中')}...") audio_fragments = self.v3_synthesis_batched_infer( idx_list, pred_semantic_list, batch_phones, speed=speed_factor, sample_steps=sample_steps ) batch_audio_fragment.extend(audio_fragments) else: for i, idx in enumerate(tqdm(idx_list)): phones = batch_phones[i].unsqueeze(0).to(self.configs.device) _pred_semantic = ( pred_semantic_list[i][-idx:].unsqueeze(0).unsqueeze(0) ) # .unsqueeze(0)#mq要多unsqueeze一次 audio_fragment = self.v3_synthesis( _pred_semantic, phones, speed=speed_factor, sample_steps=sample_steps ) batch_audio_fragment.append(audio_fragment) t5 = time.perf_counter() t_45 += t5 - t4 if return_fragment: print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t4 - t3, t5 - t4)) yield self.audio_postprocess( [batch_audio_fragment], output_sr, None, speed_factor, False, fragment_interval, super_sampling if self.configs.is_v3_synthesizer else False, ) else: audio.append(batch_audio_fragment) if self.stop_flag: yield 16000, np.zeros(int(16000), dtype=np.int16) return if not return_fragment: print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t_34, t_45)) if len(audio) == 0: yield 16000, np.zeros(int(16000), dtype=np.int16) return yield self.audio_postprocess( audio, output_sr, batch_index_list, speed_factor, split_bucket, fragment_interval, super_sampling if self.configs.is_v3_synthesizer else False, ) except Exception as e: traceback.print_exc() # 必须返回一个空音频, 否则会导致显存不释放。 yield 16000, np.zeros(int(16000), dtype=np.int16) # 重置模型, 否则会导致显存释放不完全。 del self.t2s_model del self.vits_model self.t2s_model = None self.vits_model = None self.init_t2s_weights(self.configs.t2s_weights_path) self.init_vits_weights(self.configs.vits_weights_path) raise e finally: self.empty_cache() def empty_cache(self): try: gc.collect() # 触发gc的垃圾回收。避免内存一直增长。 if "cuda" in str(self.configs.device): torch.cuda.empty_cache() elif str(self.configs.device) == "mps": torch.mps.empty_cache() except: pass def audio_postprocess( self, audio: List[torch.Tensor], sr: int, batch_index_list: list = None, speed_factor: float = 1.0, split_bucket: bool = True, fragment_interval: float = 0.3, super_sampling: bool = False, ) -> Tuple[int, np.ndarray]: zero_wav = torch.zeros( int(self.configs.sampling_rate * fragment_interval), dtype=self.precision, device=self.configs.device ) for i, batch in enumerate(audio): for j, audio_fragment in enumerate(batch): max_audio = torch.abs(audio_fragment).max() # 简单防止16bit爆音 if max_audio > 1: audio_fragment /= max_audio audio_fragment: torch.Tensor = torch.cat([audio_fragment, zero_wav], dim=0) audio[i][j] = audio_fragment if split_bucket: audio = self.recovery_order(audio, batch_index_list) else: # audio = [item for batch in audio for item in batch] audio = sum(audio, []) audio = torch.cat(audio, dim=0) if super_sampling: print(f"############ {i18n('音频超采样')} ############") t1 = time.perf_counter() self.init_sr_model() if not self.sr_model_not_exist: audio, sr = self.sr_model(audio.unsqueeze(0), sr) max_audio = np.abs(audio).max() if max_audio > 1: audio /= max_audio t2 = time.perf_counter() print(f"超采样用时:{t2 - t1:.3f}s") else: audio = audio.cpu().numpy() audio = (audio * 32768).astype(np.int16) # try: # if speed_factor != 1.0: # audio = speed_change(audio, speed=speed_factor, sr=int(sr)) # except Exception as e: # print(f"Failed to change speed of audio: \n{e}") return sr, audio def v3_synthesis( self, semantic_tokens: torch.Tensor, phones: torch.Tensor, speed: float = 1.0, sample_steps: int = 32 ): prompt_semantic_tokens = self.prompt_cache["prompt_semantic"].unsqueeze(0).unsqueeze(0).to(self.configs.device) prompt_phones = torch.LongTensor(self.prompt_cache["phones"]).unsqueeze(0).to(self.configs.device) refer_audio_spec = self.prompt_cache["refer_spec"][0].to(dtype=self.precision, device=self.configs.device) fea_ref, ge = self.vits_model.decode_encp(prompt_semantic_tokens, prompt_phones, refer_audio_spec) ref_audio: torch.Tensor = self.prompt_cache["raw_audio"] ref_sr = self.prompt_cache["raw_sr"] ref_audio = ref_audio.to(self.configs.device).float() if ref_audio.shape[0] == 2: ref_audio = ref_audio.mean(0).unsqueeze(0) if ref_sr != 24000: ref_audio = resample(ref_audio, ref_sr, self.configs.device) mel2 = mel_fn(ref_audio) mel2 = norm_spec(mel2) T_min = min(mel2.shape[2], fea_ref.shape[2]) mel2 = mel2[:, :, :T_min] fea_ref = fea_ref[:, :, :T_min] if T_min > 468: mel2 = mel2[:, :, -468:] fea_ref = fea_ref[:, :, -468:] T_min = 468 chunk_len = 934 - T_min mel2 = mel2.to(self.precision) fea_todo, ge = self.vits_model.decode_encp(semantic_tokens, phones, refer_audio_spec, ge, speed) cfm_resss = [] idx = 0 while 1: fea_todo_chunk = fea_todo[:, :, idx : idx + chunk_len] if fea_todo_chunk.shape[-1] == 0: break idx += chunk_len fea = torch.cat([fea_ref, fea_todo_chunk], 2).transpose(2, 1) cfm_res = self.vits_model.cfm.inference( fea, torch.LongTensor([fea.size(1)]).to(fea.device), mel2, sample_steps, inference_cfg_rate=0 ) cfm_res = cfm_res[:, :, mel2.shape[2] :] mel2 = cfm_res[:, :, -T_min:] fea_ref = fea_todo_chunk[:, :, -T_min:] cfm_resss.append(cfm_res) cfm_res = torch.cat(cfm_resss, 2) cfm_res = denorm_spec(cfm_res) with torch.inference_mode(): wav_gen = self.bigvgan_model(cfm_res) audio = wav_gen[0][0] # .cpu().detach().numpy() return audio def v3_synthesis_batched_infer( self, idx_list: List[int], semantic_tokens_list: List[torch.Tensor], batch_phones: List[torch.Tensor], speed: float = 1.0, sample_steps: int = 32, ) -> List[torch.Tensor]: prompt_semantic_tokens = self.prompt_cache["prompt_semantic"].unsqueeze(0).unsqueeze(0).to(self.configs.device) prompt_phones = torch.LongTensor(self.prompt_cache["phones"]).unsqueeze(0).to(self.configs.device) refer_audio_spec = self.prompt_cache["refer_spec"][0].to(dtype=self.precision, device=self.configs.device) fea_ref, ge = self.vits_model.decode_encp(prompt_semantic_tokens, prompt_phones, refer_audio_spec) ref_audio: torch.Tensor = self.prompt_cache["raw_audio"] ref_sr = self.prompt_cache["raw_sr"] ref_audio = ref_audio.to(self.configs.device).float() if ref_audio.shape[0] == 2: ref_audio = ref_audio.mean(0).unsqueeze(0) if ref_sr != 24000: ref_audio = resample(ref_audio, ref_sr, self.configs.device) mel2 = mel_fn(ref_audio) mel2 = norm_spec(mel2) T_min = min(mel2.shape[2], fea_ref.shape[2]) mel2 = mel2[:, :, :T_min] fea_ref = fea_ref[:, :, :T_min] if T_min > 468: mel2 = mel2[:, :, -468:] fea_ref = fea_ref[:, :, -468:] T_min = 468 chunk_len = 934 - T_min mel2 = mel2.to(self.precision) # #### batched inference overlapped_len = 12 feat_chunks = [] feat_lens = [] feat_list = [] for i, idx in enumerate(idx_list): phones = batch_phones[i].unsqueeze(0).to(self.configs.device) semantic_tokens = ( semantic_tokens_list[i][-idx:].unsqueeze(0).unsqueeze(0) ) # .unsqueeze(0)#mq要多unsqueeze一次 feat, _ = self.vits_model.decode_encp(semantic_tokens, phones, refer_audio_spec, ge, speed) feat_list.append(feat) feat_lens.append(feat.shape[2]) feats = torch.cat(feat_list, 2) feats_padded = F.pad(feats, (overlapped_len, 0), "constant", 0) pos = 0 padding_len = 0 while True: if pos == 0: chunk = feats_padded[:, :, pos : pos + chunk_len] else: pos = pos - overlapped_len chunk = feats_padded[:, :, pos : pos + chunk_len] pos += chunk_len if chunk.shape[-1] == 0: break # padding for the last chunk padding_len = chunk_len - chunk.shape[2] if padding_len != 0: chunk = F.pad(chunk, (0, padding_len), "constant", 0) feat_chunks.append(chunk) feat_chunks = torch.cat(feat_chunks, 0) bs = feat_chunks.shape[0] fea_ref = fea_ref.repeat(bs, 1, 1) fea = torch.cat([fea_ref, feat_chunks], 2).transpose(2, 1) pred_spec = self.vits_model.cfm.inference( fea, torch.LongTensor([fea.size(1)]).to(fea.device), mel2, sample_steps, inference_cfg_rate=0 ) pred_spec = pred_spec[:, :, -chunk_len:] dd = pred_spec.shape[1] pred_spec = pred_spec.permute(1, 0, 2).contiguous().view(dd, -1).unsqueeze(0) # pred_spec = pred_spec[..., :-padding_len] pred_spec = denorm_spec(pred_spec) with torch.no_grad(): wav_gen = self.bigvgan_model(pred_spec) audio = wav_gen[0][0] # .cpu().detach().numpy() audio_fragments = [] upsample_rate = 256 pos = 0 while pos < audio.shape[-1]: audio_fragment = audio[pos : pos + chunk_len * upsample_rate] audio_fragments.append(audio_fragment) pos += chunk_len * upsample_rate audio = self.sola_algorithm(audio_fragments, overlapped_len * upsample_rate) audio = audio[overlapped_len * upsample_rate : -padding_len * upsample_rate] audio_fragments = [] for feat_len in feat_lens: audio_fragment = audio[: feat_len * upsample_rate] audio_fragments.append(audio_fragment) audio = audio[feat_len * upsample_rate :] return audio_fragments def sola_algorithm( self, audio_fragments: List[torch.Tensor], overlap_len: int, ): for i in range(len(audio_fragments) - 1): f1 = audio_fragments[i] f2 = audio_fragments[i + 1] w1 = f1[-overlap_len:] w2 = f2[:overlap_len] assert w1.shape == w2.shape corr = F.conv1d(w1.view(1, 1, -1), w2.view(1, 1, -1), padding=w2.shape[-1] // 2).view(-1)[:-1] idx = corr.argmax() f1_ = f1[: -(overlap_len - idx)] audio_fragments[i] = f1_ f2_ = f2[idx:] window = torch.hann_window((overlap_len - idx) * 2, device=f1.device, dtype=f1.dtype) f2_[: (overlap_len - idx)] = ( window[: (overlap_len - idx)] * f2_[: (overlap_len - idx)] + window[(overlap_len - idx) :] * f1[-(overlap_len - idx) :] ) audio_fragments[i + 1] = f2_ return torch.cat(audio_fragments, 0)