import argparse import os import re import traceback import torch from tqdm import tqdm from funasr.utils import version_checker from funasr import AutoModel path_asr = "tools/asr/models/SenseVoiceSmall" path_vad = 'tools/asr/models/speech_fsmn_vad_zh-cn-16k-common-pytorch' path_punc = 'tools/asr/models/punc_ct-transformer_zh-cn-common-vocab272727-pytorch' path_asr = path_asr if os.path.exists(path_asr) else "iic/SenseVoiceSmall" path_vad = path_vad if os.path.exists(path_vad) else "iic/speech_fsmn_vad_zh-cn-16k-common-pytorch" path_punc = path_punc if os.path.exists(path_punc) else "iic/punc_ct-transformer_zh-cn-common-vocab272727-pytorch" version_checker.check_for_update = lambda: None def execute_asr(input_folder, output_folder, language, device): try: model = AutoModel(model=path_asr, vad_model=path_vad, vad_kwargs={"max_single_segment_time": 2000}, punc_model=path_punc ) except: return print(traceback.format_exc()) input_file_names = os.listdir(input_folder) input_file_names.sort() output = [] output_file_name = os.path.basename(input_folder) if device is None: device = 'cuda' if torch.cuda.is_available() else 'cpu' for file_name in tqdm(input_file_names): try: file_path = os.path.join(input_folder, file_name) res = model.generate( input=file_path, cache={}, language=language.lower(), # "zn", "en", "yue", "ja", "ko", "nospeech" use_itn=False, batch_size_s=0, device = device )[0]['text'] text_language = re.search(r'<([^<>]+)>', res).group(1)[1:-1].upper() if language == 'auto' else language.upper() text = re.sub(r'<[^<>]*>', '', res).replace(' ', '') if text_language != "EN": text = text.replace(' ', '') output.append(f"{file_path}|{output_file_name}|{text_language}|{text}") except: print(traceback.format_exc()) output_folder = output_folder or "output/asr_opt" os.makedirs(output_folder, exist_ok=True) output_file_path = os.path.abspath(f'{output_folder}/{output_file_name}.list') with open(output_file_path, "w", encoding="utf-8") as f: f.write("\n".join(output)) print(f"ASR 任务完成->标注文件路径: {output_file_path}\n") return output_file_path if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("-i", "--input_folder", type=str, required=True, help="Path to the folder containing WAV files.") parser.add_argument("-o", "--output_folder", type=str, required=True, help="Output folder to store transcriptions.") parser.add_argument("-l", "--language", type=str, default='auto', choices=['auto','zh','en','ja'], help="Language of the audio files.") parser.add_argument("-d", "--device", type=str, default=None, choices=['cpu','cuda'], help="CPU or CUDA") parser.add_argument("-p", "--precision", type=str, default='float32', choices=['float32'], help="fp16 or fp32") parser.add_argument("-s", "--model_size", type=str, default='small', choices=['small'], help="Model Size of Faster Whisper") cmd = parser.parse_args() output_file_path = execute_asr( input_folder = cmd.input_folder, output_folder = cmd.output_folder, language = cmd.language, device = cmd.device, )