import warnings warnings.filterwarnings("ignore") import os import utils import musa_utils hps = utils.get_hparams(stage=2) os.environ["CUDA_VISIBLE_DEVICES"] = hps.train.gpu_numbers.replace("-", ",") os.environ["MUSA_VISIBLE_DEVICES"] = hps.train.gpu_numbers.replace("-", ",") import logging import torch import torch.distributed as dist import torch.multiprocessing as mp from torch.cuda.amp import GradScaler if musa_utils.is_available(): autocast = torch.musa.amp.autocast elif torch.cuda.is_available(): from torch.cuda.amp import autocast from torch.nn.parallel import DistributedDataParallel as DDP from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm logging.getLogger("matplotlib").setLevel(logging.INFO) logging.getLogger("h5py").setLevel(logging.INFO) logging.getLogger("numba").setLevel(logging.INFO) from collections import OrderedDict as od from random import randint from module import commons from module.data_utils import ( DistributedBucketSampler, TextAudioSpeakerCollateV3, TextAudioSpeakerLoaderV3, TextAudioSpeakerCollateV4, TextAudioSpeakerLoaderV4, ) from module.models import ( SynthesizerTrnV3 as SynthesizerTrn, ) from peft import LoraConfig, get_peft_model from process_ckpt import savee torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = False ###反正A100fp32更快,那试试tf32吧 torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True if musa_utils.is_available(): torch.backends.mudnn.allow_tf32 = True torch.set_float32_matmul_precision("medium") # 最低精度但最快(也就快一丁点),对于结果造成不了影响 # from config import pretrained_s2G,pretrained_s2D global_step = 0 device = "cpu" # cuda以外的设备,等mps优化后加入 if musa_utils.is_available(): # DDP支持不写了,没设备测试 device = "musa" def main(): if torch.cuda.is_available(): n_gpus = torch.cuda.device_count() else: n_gpus = 1 os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = str(randint(20000, 55555)) mp.spawn( run, nprocs=n_gpus, args=( n_gpus, hps, ), ) def run(rank, n_gpus, hps): global global_step, no_grad_names, save_root, lora_rank if rank == 0: logger = utils.get_logger(hps.data.exp_dir) logger.info(hps) # utils.check_git_hash(hps.s2_ckpt_dir) writer = SummaryWriter(log_dir=hps.s2_ckpt_dir) writer_eval = SummaryWriter(log_dir=os.path.join(hps.s2_ckpt_dir, "eval")) dist.init_process_group( backend="gloo" if os.name == "nt" or not torch.cuda.is_available() else "nccl", init_method="env://?use_libuv=False", world_size=n_gpus, rank=rank, ) torch.manual_seed(hps.train.seed) if torch.cuda.is_available(): torch.cuda.set_device(rank) TextAudioSpeakerLoader = TextAudioSpeakerLoaderV3 if hps.model.version == "v3" else TextAudioSpeakerLoaderV4 TextAudioSpeakerCollate = TextAudioSpeakerCollateV3 if hps.model.version == "v3" else TextAudioSpeakerCollateV4 train_dataset = TextAudioSpeakerLoader(hps.data) ######## train_sampler = DistributedBucketSampler( train_dataset, hps.train.batch_size, [ 32, 300, 400, 500, 600, 700, 800, 900, 1000, # 1100, # 1200, # 1300, # 1400, # 1500, # 1600, # 1700, # 1800, # 1900, ], num_replicas=n_gpus, rank=rank, shuffle=True, ) collate_fn = TextAudioSpeakerCollate() train_loader = DataLoader( train_dataset, num_workers=6, shuffle=False, pin_memory=True, collate_fn=collate_fn, batch_sampler=train_sampler, persistent_workers=True, prefetch_factor=4, ) save_root = "%s/logs_s2_%s_lora_%s" % (hps.data.exp_dir, hps.model.version, hps.train.lora_rank) os.makedirs(save_root, exist_ok=True) lora_rank = int(hps.train.lora_rank) lora_config = LoraConfig( target_modules=["to_k", "to_q", "to_v", "to_out.0"], r=lora_rank, lora_alpha=lora_rank, init_lora_weights=True, ) def get_model(hps): return SynthesizerTrn( hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model, ) def get_optim(net_g): return torch.optim.AdamW( filter(lambda p: p.requires_grad, net_g.parameters()), ###默认所有层lr一致 hps.train.learning_rate, betas=hps.train.betas, eps=hps.train.eps, ) def model2cuda(net_g, rank): if torch.cuda.is_available(): net_g = DDP(net_g.cuda(rank), device_ids=[rank], find_unused_parameters=True) else: net_g = net_g.to(device) return net_g try: # 如果能加载自动resume net_g = get_model(hps) net_g.cfm = get_peft_model(net_g.cfm, lora_config) net_g = model2cuda(net_g, rank) optim_g = get_optim(net_g) # _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g,load_opt=0) _, _, _, epoch_str = utils.load_checkpoint( utils.latest_checkpoint_path(save_root, "G_*.pth"), net_g, optim_g, ) epoch_str += 1 global_step = (epoch_str - 1) * len(train_loader) except: # 如果首次不能加载,加载pretrain # traceback.print_exc() epoch_str = 1 global_step = 0 net_g = get_model(hps) if ( hps.train.pretrained_s2G != "" and hps.train.pretrained_s2G != None and os.path.exists(hps.train.pretrained_s2G) ): if rank == 0: logger.info("loaded pretrained %s" % hps.train.pretrained_s2G) print( "loaded pretrained %s" % hps.train.pretrained_s2G, net_g.load_state_dict( torch.load(hps.train.pretrained_s2G, map_location="cpu", weights_only=False)["weight"], strict=False, ), ) net_g.cfm = get_peft_model(net_g.cfm, lora_config) net_g = model2cuda(net_g, rank) optim_g = get_optim(net_g) no_grad_names = set() for name, param in net_g.named_parameters(): if not param.requires_grad: no_grad_names.add(name.replace("module.", "")) # print(name, "not requires_grad") # print(no_grad_names) # os._exit(233333) scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=-1) for _ in range(epoch_str): scheduler_g.step() if musa_utils.is_available(): scaler = torch.musa.amp.GradScaler(enabled=hps.train.fp16_run) else: scaler = GradScaler(enabled=hps.train.fp16_run) net_d = optim_d = scheduler_d = None print("start training from epoch %s" % epoch_str) for epoch in range(epoch_str, hps.train.epochs + 1): if rank == 0: train_and_evaluate( rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, # [train_loader, eval_loader], logger, [writer, writer_eval]) [train_loader, None], logger, [writer, writer_eval], ) else: train_and_evaluate( rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None, ) scheduler_g.step() print("training done") def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers): net_g, net_d = nets optim_g, optim_d = optims # scheduler_g, scheduler_d = schedulers train_loader, eval_loader = loaders if writers is not None: writer, writer_eval = writers train_loader.batch_sampler.set_epoch(epoch) global global_step net_g.train() for batch_idx, (ssl, spec, mel, ssl_lengths, spec_lengths, text, text_lengths, mel_lengths) in enumerate( tqdm(train_loader) ): if torch.cuda.is_available(): spec, spec_lengths = ( spec.cuda( rank, non_blocking=True, ), spec_lengths.cuda( rank, non_blocking=True, ), ) mel, mel_lengths = mel.cuda(rank, non_blocking=True), mel_lengths.cuda(rank, non_blocking=True) ssl = ssl.cuda(rank, non_blocking=True) ssl.requires_grad = False text, text_lengths = ( text.cuda( rank, non_blocking=True, ), text_lengths.cuda( rank, non_blocking=True, ), ) else: spec, spec_lengths = spec.to(device), spec_lengths.to(device) mel, mel_lengths = mel.to(device), mel_lengths.to(device) ssl = ssl.to(device) ssl.requires_grad = False text, text_lengths = text.to(device), text_lengths.to(device) with autocast(enabled=hps.train.fp16_run): cfm_loss = net_g( ssl, spec, mel, ssl_lengths, spec_lengths, text, text_lengths, mel_lengths, use_grad_ckpt=hps.train.grad_ckpt, ) loss_gen_all = cfm_loss optim_g.zero_grad() scaler.scale(loss_gen_all).backward() scaler.unscale_(optim_g) grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None) scaler.step(optim_g) scaler.update() if rank == 0: if global_step % hps.train.log_interval == 0: lr = optim_g.param_groups[0]["lr"] losses = [cfm_loss] logger.info("Train Epoch: {} [{:.0f}%]".format(epoch, 100.0 * batch_idx / len(train_loader))) logger.info([x.item() for x in losses] + [global_step, lr]) scalar_dict = {"loss/g/total": loss_gen_all, "learning_rate": lr, "grad_norm_g": grad_norm_g} utils.summarize( writer=writer, global_step=global_step, scalars=scalar_dict, ) global_step += 1 if epoch % hps.train.save_every_epoch == 0 and rank == 0: if hps.train.if_save_latest == 0: utils.save_checkpoint( net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(save_root, "G_{}.pth".format(global_step)), ) else: utils.save_checkpoint( net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(save_root, "G_{}.pth".format(233333333333)), ) if rank == 0 and hps.train.if_save_every_weights == True: if hasattr(net_g, "module"): ckpt = net_g.module.state_dict() else: ckpt = net_g.state_dict() sim_ckpt = od() for key in ckpt: # if "cfm"not in key: # print(key) if key not in no_grad_names: sim_ckpt[key] = ckpt[key].half().cpu() logger.info( "saving ckpt %s_e%s:%s" % ( hps.name, epoch, savee( sim_ckpt, hps.name + "_e%s_s%s_l%s" % (epoch, global_step, lora_rank), epoch, global_step, hps, model_version=hps.model.version, lora_rank=lora_rank, ), ) ) if rank == 0: logger.info("====> Epoch: {}".format(epoch)) if __name__ == "__main__": main()