# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py # reference: https://github.com/lifeiteng/vall-e import math from typing import List, Optional import torch from tqdm import tqdm from AR.models.utils import ( sample, ) from AR.modules.embedding import TokenEmbedding from AR.modules.transformer import LayerNorm from AR.modules.transformer import TransformerEncoder from AR.modules.transformer import TransformerEncoderLayer from torch import nn from torch.nn import functional as F from torchmetrics.classification import MulticlassAccuracy from torch.distributions import Exponential ISONNXEXPORT = False default_config = { "model": { "vocab_size": 1025, "phoneme_vocab_size": 512, "embedding_dim": 1024, "hidden_dim": 1024, "head": 16, "linear_units": 2048, "n_layer": 16, "dropout": 0, "EOS": 1024, } } def multinomial_sample_one_no_sync( probs_sort, ): # Does multinomial sampling without a cuda synchronization q = -torch.log(torch.rand_like(probs_sort)) #https://github.com/RVC-Boss/GPT-SoVITS/pull/835 return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.long) def logits_to_probs( logits, previous_tokens: torch.Tensor, temperature: torch.Tensor, top_k: torch.Tensor, top_p: torch.Tensor, repetition_penalty: torch.Tensor ): # if previous_tokens is not None: # previous_tokens = previous_tokens.squeeze() # print(logits.shape,previous_tokens.shape) # pdb.set_trace() previous_tokens = previous_tokens.long() score = torch.gather(logits, dim=1, index=previous_tokens) score = torch.where( score < 0, score * repetition_penalty, score / repetition_penalty ) logits.scatter_(dim=1, index=previous_tokens, src=score) sorted_logits, sorted_indices = torch.sort(logits, descending=True) cum_probs = torch.cumsum( torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1 ) sorted_indices_to_remove = cum_probs > top_p sorted_indices_to_remove[:, 0] = False # keep at least one option indices_to_remove = sorted_indices_to_remove.scatter( dim=1, index=sorted_indices, src=sorted_indices_to_remove ) logits = logits.masked_fill(indices_to_remove, -float("Inf")) logits = logits / torch.clamp_min(temperature, 1e-5) v, _ = torch.topk(logits, top_k) pivot = v[: , -1].unsqueeze(-1) logits = torch.where(logits < pivot, -float("Inf"), logits) probs = torch.nn.functional.softmax(logits, dim=-1) return probs def sample( logits, previous_tokens: Optional[torch.Tensor] = None, **sampling_kwargs, ): probs = logits_to_probs( logits=logits, previous_tokens=previous_tokens, **sampling_kwargs ) idx_next = multinomial_sample_one_no_sync(probs) return idx_next, probs # @torch.jit.script ## 使用的话首次推理会非常慢,而且推理速度不稳定 # Efficient implementation equivalent to the following: def scaled_dot_product_attention(query:torch.Tensor, key:torch.Tensor, value:torch.Tensor, attn_mask:Optional[torch.Tensor]=None, scale:Optional[torch.Tensor]=None) -> torch.Tensor: B, H, L, S =query.size(0), query.size(1), query.size(-2), key.size(-2) if scale is None: scale_factor = torch.tensor(1 / math.sqrt(query.size(-1))) else: scale_factor = scale attn_bias = torch.zeros(B, H, L, S, dtype=query.dtype, device=query.device) if attn_mask is not None: if attn_mask.dtype == torch.bool: attn_bias = attn_bias.masked_fill(attn_mask, float("-inf")) else: attn_bias = attn_bias + attn_mask attn_weight = query @ key.transpose(-2, -1) * scale_factor attn_weight += attn_bias attn_weight = torch.softmax(attn_weight, dim=-1) if attn_mask is not None: if attn_mask.dtype == torch.bool: attn_weight = attn_weight.masked_fill(attn_mask, 0) else: attn_mask = attn_mask.clone() attn_mask[attn_mask!=float("-inf")] =0 attn_mask[attn_mask==float("-inf")] =1 attn_weight = attn_weight.masked_fill(attn_mask, 0) return attn_weight @ value @torch.jit.script class T2SMLP: def __init__(self, w1, b1, w2, b2): self.w1 = w1 self.b1 = b1 self.w2 = w2 self.b2 = b2 def forward(self, x): x = F.relu(F.linear(x, self.w1, self.b1)) x = F.linear(x, self.w2, self.b2) return x @torch.jit.script class T2SBlock: def __init__( self, num_heads, hidden_dim: int, mlp: T2SMLP, qkv_w, qkv_b, out_w, out_b, norm_w1, norm_b1, norm_eps1, norm_w2, norm_b2, norm_eps2, ): self.num_heads = num_heads self.mlp = mlp self.hidden_dim: int = hidden_dim self.qkv_w = qkv_w self.qkv_b = qkv_b self.out_w = out_w self.out_b = out_b self.norm_w1 = norm_w1 self.norm_b1 = norm_b1 self.norm_eps1 = norm_eps1 self.norm_w2 = norm_w2 self.norm_b2 = norm_b2 self.norm_eps2 = norm_eps2 self.false = torch.tensor(False, dtype=torch.bool) @torch.jit.ignore def to_mask(self, x:torch.Tensor, padding_mask:Optional[torch.Tensor]): if padding_mask is None: return x if padding_mask.dtype == torch.bool: return x.masked_fill(padding_mask, 0) else: return x * padding_mask def process_prompt(self, x:torch.Tensor, attn_mask : torch.Tensor, padding_mask:Optional[torch.Tensor]=None, torch_sdpa:bool=True): q, k, v = F.linear(self.to_mask(x, padding_mask), self.qkv_w, self.qkv_b).chunk(3, dim=-1) batch_size = q.shape[0] q_len = q.shape[1] kv_len = k.shape[1] q = self.to_mask(q, padding_mask) k_cache = self.to_mask(k, padding_mask) v_cache = self.to_mask(v, padding_mask) q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2) k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2) v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2) if torch_sdpa: attn = F.scaled_dot_product_attention(q, k, v, ~attn_mask) else: attn = scaled_dot_product_attention(q, k, v, attn_mask) attn = attn.transpose(1, 2).reshape(batch_size, q_len, -1) attn = F.linear(self.to_mask(attn, padding_mask), self.out_w, self.out_b) x = x + attn x = F.layer_norm( x, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1 ) x = x + self.mlp.forward(x) x = F.layer_norm( x, [self.hidden_dim], self.norm_w2, self.norm_b2, self.norm_eps2, ) return x, k_cache, v_cache def decode_next_token(self, x, k_cache, v_cache): q, k, v = F.linear(x, self.qkv_w, self.qkv_b).chunk(3, dim=-1) k_cache = torch.cat([k_cache, k], dim=1) v_cache = torch.cat([v_cache, v], dim=1) batch_size = q.shape[0] q_len = q.shape[1] kv_len = k_cache.shape[1] q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2) k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2) v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2) attn = F.scaled_dot_product_attention(q, k, v) attn = attn.transpose(1, 2).reshape(batch_size, q_len, -1) attn = F.linear(attn, self.out_w, self.out_b) x = x + attn x = F.layer_norm( x, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1 ) x = x + self.mlp.forward(x) x = F.layer_norm( x, [self.hidden_dim], self.norm_w2, self.norm_b2, self.norm_eps2, ) return x, k_cache, v_cache @torch.jit.script class T2STransformer: def __init__(self, num_blocks : int, blocks: List[T2SBlock]): self.num_blocks : int = num_blocks self.blocks = blocks def process_prompt( self, x:torch.Tensor, attn_mask : torch.Tensor, padding_mask : Optional[torch.Tensor]=None, torch_sdpa:bool=True ): k_cache : List[torch.Tensor] = [] v_cache : List[torch.Tensor] = [] for i in range(self.num_blocks): x, k_cache_, v_cache_ = self.blocks[i].process_prompt(x, attn_mask, padding_mask, torch_sdpa) k_cache.append(k_cache_) v_cache.append(v_cache_) return x, k_cache, v_cache def decode_next_token( self, x:torch.Tensor, k_cache, v_cache, ): K_Cache = [] V_Cache = [] for i in range(self.num_blocks): x, k, v = self.blocks[i].decode_next_token(x, k_cache[i], v_cache[i]) K_Cache.append(k) V_Cache.append(v) K_Cache = torch.stack(K_Cache, dim=0) V_Cache = torch.stack(V_Cache, dim=0) return x, K_Cache, V_Cache class SinePositionalEmbedding(nn.Module): def __init__( self, embedding_dim: int, dropout: float = 0.0, scale: bool = False, alpha: bool = False, ): super().__init__() self.embedding_dim = embedding_dim self.x_scale = math.sqrt(embedding_dim) if scale else 1.0 self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha) self.dropout = torch.nn.Dropout(p=dropout) self.reverse = False self.pe = None self.extend_pe(torch.tensor(0.0).expand(1, 114514)) def extend_pe(self, x): if self.pe is not None: if self.pe.size(1) >= x.size(1): if self.pe.dtype != x.dtype or self.pe.device != x.device: self.pe = self.pe.to(dtype=x.dtype, device=x.device) return pe = torch.zeros(x.size(1), self.embedding_dim) if self.reverse: position = torch.arange( x.size(1) - 1, -1, -1.0, dtype=torch.float32 ).unsqueeze(1) else: position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1) div_term = torch.exp( torch.arange(0, self.embedding_dim, 2, dtype=torch.float32) * -(math.log(10000.0) / self.embedding_dim) ) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.pe = pe.to(device=x.device, dtype=x.dtype).detach() def forward(self, x: torch.Tensor, x_size) -> torch.Tensor: output = x.unsqueeze(-1) if x.ndim == 2 else x output[:,:x_size,:] = output[:,:x_size,:] * self.x_scale + self.alpha * self.pe[:, : x_size] return self.dropout(output) class PromptProcessor(nn.Module): def __init__(self, cache_len, model, top_k): super(PromptProcessor, self).__init__() self.top_k = top_k self.model = model self.ar_text_embedding = model.ar_text_embedding self.ar_text_position = model.ar_text_position self.ar_audio_embedding = model.ar_audio_embedding self.ar_audio_position = model.ar_audio_position self.bert_proj = model.bert_proj cache_len = torch.tensor(cache_len) self.register_buffer("cache_len", cache_len, persistent=False) def forward(self, x, x_len, y, y_len, bert_feature, top_p, repetition_penalty, temperature): bsz = x.size(0) src_len = x_len + y_len x_emb = self.ar_text_embedding(x) x_emb = x_emb + self.bert_proj(bert_feature) x_pos = self.ar_text_position(x_emb, x_len) x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool) y_emb = self.ar_audio_embedding(y) y_pos = self.ar_audio_position(y_emb, y_len) y_attn_mask = F.pad(torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),(x_len, 0),value=False) xy_pos = torch.concat([x_pos, y_pos], dim=1) x_attn_mask_pad = F.pad(x_attn_mask,(0, y_len),value=True) xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).unsqueeze(0)\ .expand(bsz * self.model.num_head, -1, -1)\ .view(bsz, self.model.num_head, src_len, src_len)\ .to(device=x.device, dtype=torch.bool) xy_dec, k_cache, v_cache = self.model.t2s_transformer.process_prompt(xy_pos, xy_attn_mask, None) logits = self.model.ar_predict_layer( xy_dec[:, -1] ) samples = sample( logits, y, top_k=self.top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature )[0] y = torch.concat([y, samples], dim=1) y_emb = self.ar_audio_embedding(samples) xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len].to(dtype=y_emb.dtype,device=y_emb.device) k_cache = torch.stack(k_cache, dim=0) v_cache = torch.stack(v_cache, dim=0) return y, k_cache, v_cache, xy_pos, y_len + 1, samples class DecodeNextToken(nn.Module): def __init__(self, cache_len, model, top_k): super(DecodeNextToken, self).__init__() self.top_k = top_k self.model = model self.ar_text_embedding = model.ar_text_embedding self.ar_text_position = model.ar_text_position self.ar_audio_embedding = model.ar_audio_embedding self.ar_audio_position = model.ar_audio_position cache_len = torch.tensor(cache_len) self.register_buffer("cache_len", cache_len, persistent=False) def forward(self, y, k_cache, v_cache, xy_pos, y_idx, top_p, repetition_penalty, temperature): xy_dec, k_cache, v_cache = self.model.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache) logits = self.model.ar_predict_layer( xy_dec[:, -1] ) samples = sample( logits, y, top_k=self.top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature )[0] y = torch.concat([y, samples], dim=1) y_emb = self.ar_audio_embedding(samples) xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_idx].to(dtype=y_emb.dtype,device=y_emb.device) return y, k_cache, v_cache, xy_pos, y_idx + 1, samples class Text2SemanticDecoder(nn.Module): def __init__(self, config, norm_first=False, top_k=3): super(Text2SemanticDecoder, self).__init__() self.model_dim = config["model"]["hidden_dim"] self.embedding_dim = config["model"]["embedding_dim"] self.num_head = config["model"]["head"] self.num_layers = config["model"]["n_layer"] self.norm_first = norm_first self.vocab_size = config["model"]["vocab_size"] self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"] self.p_dropout = config["model"]["dropout"] self.EOS = config["model"]["EOS"] self.norm_first = norm_first assert self.EOS == self.vocab_size - 1 self.bert_proj = nn.Linear(1024, self.embedding_dim) self.ar_text_embedding = TokenEmbedding( self.embedding_dim, self.phoneme_vocab_size, self.p_dropout ) self.ar_text_position = SinePositionalEmbedding( self.embedding_dim, dropout=0.1, scale=False, alpha=True ) self.ar_audio_embedding = TokenEmbedding( self.embedding_dim, self.vocab_size, self.p_dropout ) self.ar_audio_position = SinePositionalEmbedding( self.embedding_dim, dropout=0.1, scale=False, alpha=True ) self.h = TransformerEncoder( TransformerEncoderLayer( d_model=self.model_dim, nhead=self.num_head, dim_feedforward=self.model_dim * 4, dropout=0.1, batch_first=True, norm_first=norm_first, ), num_layers=self.num_layers, norm=LayerNorm(self.model_dim) if norm_first else None, ) self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False) self.loss_fct = nn.CrossEntropyLoss(reduction="sum") self.ar_accuracy_metric = MulticlassAccuracy( self.vocab_size, top_k=top_k, average="micro", multidim_average="global", ignore_index=self.EOS, ) blocks = [] for i in range(self.num_layers): layer = self.h.layers[i] t2smlp = T2SMLP( layer.linear1.weight, layer.linear1.bias, layer.linear2.weight, layer.linear2.bias ) block = T2SBlock( self.num_head, self.model_dim, t2smlp, layer.self_attn.in_proj_weight, layer.self_attn.in_proj_bias, layer.self_attn.out_proj.weight, layer.self_attn.out_proj.bias, layer.norm1.weight, layer.norm1.bias, layer.norm1.eps, layer.norm2.weight, layer.norm2.bias, layer.norm2.eps ) blocks.append(block) self.t2s_transformer = T2STransformer(self.num_layers, blocks) def infer_panel_naive( self, x:torch.LongTensor, #####全部文本token x_lens:torch.LongTensor, prompts:torch.LongTensor, ####参考音频token bert_feature:torch.LongTensor, top_k: int = -100, top_p: int = 100, early_stop_num: int = -1, temperature: float = 1.0, repetition_penalty: float = 1.35, **kwargs ): x = self.ar_text_embedding(x) x = x + self.bert_proj(bert_feature.transpose(1, 2)) x = self.ar_text_position(x) y = prompts x_len = x.shape[1] x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool) stop = False k_cache = None v_cache = None y_emb = self.ar_audio_embedding(y) y_len = y_emb.shape[1] prefix_len = y.shape[1] y_pos = self.ar_audio_position(y_emb) xy_pos = torch.concat([x, y_pos], dim=1) bsz = x.shape[0] src_len = x_len + y_len x_attn_mask_pad = F.pad( x_attn_mask, (0, y_len), value=True, ) y_attn_mask = F.pad( torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1), (x_len, 0), value=False, ) xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)\ .unsqueeze(0)\ .expand(bsz*self.num_head, -1, -1)\ .view(bsz, self.num_head, src_len, src_len)\ .to(device=x.device, dtype=torch.bool) for idx in tqdm(range(1500)): if xy_attn_mask is not None: xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, xy_attn_mask, None) else: xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache) logits = self.ar_predict_layer( xy_dec[:, -1] ) if idx == 0: xy_attn_mask = None if(idx<11):###至少预测出10个token不然不给停止(0.4s) logits = logits[:, :-1] samples = sample( logits, y, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature )[0] y = torch.concat([y, samples], dim=1) if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num: print("use early stop num:", early_stop_num) stop = True if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS: stop = True if stop: if y.shape[1] == 0: y = torch.concat([y, torch.zeros_like(samples)], dim=1) print("bad zero prediction") print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]") break ####################### update next step ################################### y_emb = self.ar_audio_embedding(y[:, -1:]) xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len + idx].to(dtype=y_emb.dtype,device=y_emb.device) return y[:, :-1], idx def infer(self, x, prompts, bert_feature): top_k = self.top_k early_stop_num = self.early_stop_num x = self.onnx_encoder(x, bert_feature) y = prompts prefix_len = y.shape[1] x_len = x.shape[1] x_example = x[:,:,0] * 0.0 x_attn_mask = torch.matmul(x_example.transpose(0, 1), x_example) x_attn_mask = torch.zeros_like(x_attn_mask, dtype=torch.bool) stop = False cache = { "all_stage": self.num_layers, "k": [None] * self.num_layers, "v": [None] * self.num_layers, "y_emb": None, "first_infer": 1, "stage": 0, } for idx in range(1500): if cache["first_infer"] == 1: y_emb = self.ar_audio_embedding(y) else: y_emb = torch.cat( [cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1 ) cache["y_emb"] = y_emb y_pos = self.ar_audio_position(y_emb) if cache["first_infer"] == 1: xy_pos = torch.concat([x, y_pos], dim=1) else: xy_pos = y_pos[:, -1:] y_len = y_pos.shape[1] if cache["first_infer"] == 1: x_attn_mask_pad = F.pad(x_attn_mask, (0, y_len), value=True) y_attn_mask = F.pad( torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1), (x_len, 0), value=False ) xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0) else: xy_attn_mask = torch.zeros((1, x_len + y_len), dtype=torch.bool) xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache) logits = self.ar_predict_layer(xy_dec[:, -1]) samples = sample(logits[0], y, top_k=top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0) if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num: stop = True if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS: stop = True if stop: if prompts.shape[1] == y.shape[1]: y = torch.concat([y, torch.zeros_like(samples)], dim=1) break y = torch.concat([y, samples], dim=1) cache["first_infer"] = 0 return y, idx