# -*- coding:utf-8 -*- from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks from modelscope.models import Model import sys,os,traceback dir=sys.argv[1] # opt_name=dir.split("\\")[-1].split("/")[-1] opt_name=os.path.basename(dir) # FunAsr三语转写model lang2model = { 'zh': 'tools/damo_asr/models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch', 'ja': "tools/damo_asr/models/speech_UniASR_asr_2pass-ja-16k-common-vocab93-tensorflow1-offline", "en": "tools/damo_asr/models/speech_UniASR_asr_2pass-en-16k-common-vocab1080-tensorflow1-offline", } model = Model.from_pretrained(lang2model["zh"]) inference_pipeline = pipeline( task=Tasks.auto_speech_recognition, model=model, vad_model='tools/damo_asr/models/speech_fsmn_vad_zh-cn-16k-common-pytorch', punc_model='tools/damo_asr/models/punc_ct-transformer_zh-cn-common-vocab272727-pytorch', ) opt=[] for name in os.listdir(dir): try: text = inference_pipeline(audio_in="%s/%s"%(dir,name))["text"] opt.append("%s/%s|%s|ZH|%s"%(dir,name,opt_name,text)) except: print(traceback.format_exc()) opt_dir="output/asr_opt" os.makedirs(opt_dir,exist_ok=True) with open("%s/%s.list"%(opt_dir,opt_name),"w",encoding="utf-8")as f:f.write("\n".join(opt))