# Adapted from https://github.com/jik876/hifi-gan under the MIT license. # LICENSE is in incl_licenses directory. import glob import os import torch from torch.nn.utils import weight_norm def init_weights(m, mean=0.0, std=0.01): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(mean, std) def apply_weight_norm(m): classname = m.__class__.__name__ if classname.find("Conv") != -1: weight_norm(m) def get_padding(kernel_size, dilation=1): return int((kernel_size * dilation - dilation) / 2) def load_checkpoint(filepath, device): assert os.path.isfile(filepath) print(f"Loading '{filepath}'") checkpoint_dict = torch.load(filepath, map_location=device) print("Complete.") return checkpoint_dict def save_checkpoint(filepath, obj): print(f"Saving checkpoint to {filepath}") torch.save(obj, filepath) print("Complete.") def scan_checkpoint(cp_dir, prefix, renamed_file=None): # Fallback to original scanning logic first pattern = os.path.join(cp_dir, prefix + "????????") cp_list = glob.glob(pattern) if len(cp_list) > 0: last_checkpoint_path = sorted(cp_list)[-1] print(f"[INFO] Resuming from checkpoint: '{last_checkpoint_path}'") return last_checkpoint_path # If no pattern-based checkpoints are found, check for renamed file if renamed_file: renamed_path = os.path.join(cp_dir, renamed_file) if os.path.isfile(renamed_path): print(f"[INFO] Resuming from renamed checkpoint: '{renamed_file}'") return renamed_path return None