GPT-SoVITS-WebUI
强大的少样本语音转换与语音合成Web用户界面。
[](https://github.com/RVC-Boss/GPT-SoVITS)

[](https://github.com/RVC-Boss/GPT-SoVITS/blob/main/LICENSE)
[](https://huggingface.co/lj1995/GPT-SoVITS/tree/main)
[**English**](./README.md) | [**中文简体**](./README_ZH.md)
------
> 查看我们的介绍视频 [demo video](https://www.bilibili.com/video/BV12g4y1m7Uw)
https://github.com/RVC-Boss/GPT-SoVITS/assets/129054828/05bee1fa-bdd8-4d85-9350-80c060ab47fb
中国地区用户可使用AutoDL云端镜像进行体验:https://www.codewithgpu.com/i/RVC-Boss/GPT-SoVITS/GPT-SoVITS-Official
## 功能:
1. **零样本文本到语音(TTS):** 输入5秒的声音样本,即刻体验文本到语音转换。
2. **少样本TTS:** 仅需1分钟的训练数据即可微调模型,提升声音相似度和真实感。
3. **跨语言支持:** 支持与训练数据集不同语言的推理,目前支持英语、日语和中文。
4. **WebUI工具:** 集成工具包括声音伴奏分离、自动训练集分割、中文自动语音识别(ASR)和文本标注,协助初学者创建训练数据集和GPT/SoVITS模型。
## 环境准备
如果你是Windows用户(已在win>=10上测试),可以直接通过预打包文件安装。只需下载[预打包文件](https://huggingface.co/lj1995/GPT-SoVITS-windows-package/resolve/main/GPT-SoVITS-beta.7z?download=true),解压后双击go-webui.bat即可启动GPT-SoVITS-WebUI。
### 测试通过的Python和PyTorch版本
- Python 3.9、PyTorch 2.0.1和CUDA 11
- Python 3.10.13, PyTorch 2.1.2和CUDA 12.3
- Python 3.9、Pytorch 2.3.0.dev20240122和macOS 14.3(Apple 芯片,MPS)
_注意: numba==0.56.4 需要 python<3.11_
### Mac 用户
如果你是Mac用户,请使用以下命令安装:
#### 创建环境
```bash
conda create -n GPTSoVits python=3.9
conda activate GPTSoVits
```
#### 安装依赖
```bash
pip install -r requirements.txt
pip uninstall torch torchaudio
pip3 install --pre torch torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu
```
_注意:如需使用UVR5进行预处理,建议[下载原项目GUI](https://github.com/Anjok07/ultimatevocalremovergui),勾选GPU运行。另外,使用Mac推理时可能存在内存泄漏问题,重启推理UI即可释放内存。_
### 使用Conda快速安装
```bash
conda create -n GPTSoVits python=3.9
conda activate GPTSoVits
bash install.sh
```
### 手动安装包
#### Pip包
```bash
pip install -r requirements.txt
```
#### FFmpeg
##### Conda 使用者
```bash
conda install ffmpeg
```
##### Ubuntu/Debian 使用者
```bash
sudo apt install ffmpeg
sudo apt install libsox-dev
conda install -c conda-forge 'ffmpeg<7'
```
##### MacOS 使用者
```bash
brew install ffmpeg
```
##### Windows 使用者
下载并将 [ffmpeg.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffmpeg.exe) 和 [ffprobe.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffprobe.exe) 放置在 GPT-SoVITS 根目录下。
### 在 Docker 中使用
#### docker-compose.yaml 设置
1. 环境变量:
- is_half: 半精度/双精度控制。在进行 "SSL extracting" 步骤时如果无法正确生成 4-cnhubert/5-wav32k 目录下的内容时,一般都是它引起的,可以根据实际情况来调整为True或者False。
2. Volume设置,容器内的应用根目录设置为 /workspace。 默认的 docker-compose.yaml 中列出了一些实际的例子,便于上传/下载内容。
3. shm_size:Windows下的Docker Desktop默认可用内存过小,会导致运行异常,根据自己情况酌情设置。
4. deploy小节下的gpu相关内容,请根据您的系统和实际情况酌情设置。
#### 通过 docker compose运行
```
docker compose -f "docker-compose.yaml" up -d
```
#### 通过 docker 命令运行
同上,根据您自己的实际情况修改对应的参数,然后运行如下命令:
```
docker run --rm -it --gpus=all --env=is_half=False --volume=G:\GPT-SoVITS-DockerTest\output:/workspace/output --volume=G:\GPT-SoVITS-DockerTest\logs:/workspace/logs --volume=G:\GPT-SoVITS-DockerTest\SoVITS_weights:/workspace/SoVITS_weights --workdir=/workspace -p 9870:9870 -p 9871:9871 -p 9872:9872 -p 9873:9873 -p 9874:9874 --shm-size="16G" -d breakstring/gpt-sovits:dev-20240123.03
```
### 预训练模型
从 [GPT-SoVITS Models](https://huggingface.co/lj1995/GPT-SoVITS) 下载预训练模型,并将它们放置在 `GPT_SoVITS\pretrained_models` 中。
对于中文自动语音识别(另外),从 [Damo ASR Model](https://modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/files), [Damo VAD Model](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/files), 和 [Damo Punc Model](https://modelscope.cn/models/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch/files) 下载模型,并将它们放置在 `tools/damo_asr/models` 中。
对于UVR5(人声/伴奏分离和混响移除,另外),从 [UVR5 Weights](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/uvr5_weights) 下载模型,并将它们放置在 `tools/uvr5/uvr5_weights` 中。
## 数据集格式
文本到语音(TTS)注释 .list 文件格式:
```
vocal_path|speaker_name|language|text
```
语言字典:
- 'zh': Chinese
- 'ja': Japanese
- 'en': English
示例:
```
D:\GPT-SoVITS\xxx/xxx.wav|xxx|en|I like playing Genshin.
```
## 待办事项清单
- [ ] **高优先级:**
- [ ] 日语和英语的本地化。
- [ ] 用户指南。
- [ ] 日语和英语数据集微调训练。
- [ ] **Features:**
- [ ] 零样本声音转换(5秒)/ 少样本声音转换(1分钟)。
- [ ] TTS语速控制。
- [ ] 增强的TTS情感控制。
- [ ] 尝试将SoVITS令牌输入更改为词汇的概率分布。
- [ ] 改进英语和日语文本前端。
- [ ] 开发体积小和更大的TTS模型。
- [ ] Colab脚本。
- [ ] 扩展训练数据集(从2k小时到10k小时)。
- [ ] 更好的sovits基础模型(增强的音频质量)。
- [ ] 模型混合。
## 致谢
特别感谢以下项目和贡献者:
- [ar-vits](https://github.com/innnky/ar-vits)
- [SoundStorm](https://github.com/yangdongchao/SoundStorm/tree/master/soundstorm/s1/AR)
- [vits](https://github.com/jaywalnut310/vits)
- [TransferTTS](https://github.com/hcy71o/TransferTTS/blob/master/models.py#L556)
- [Chinese Speech Pretrain](https://github.com/TencentGameMate/chinese_speech_pretrain)
- [contentvec](https://github.com/auspicious3000/contentvec/)
- [hifi-gan](https://github.com/jik876/hifi-gan)
- [Chinese-Roberta-WWM-Ext-Large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large)
- [fish-speech](https://github.com/fishaudio/fish-speech/blob/main/tools/llama/generate.py#L41)
- [ultimatevocalremovergui](https://github.com/Anjok07/ultimatevocalremovergui)
- [audio-slicer](https://github.com/openvpi/audio-slicer)
- [SubFix](https://github.com/cronrpc/SubFix)
- [FFmpeg](https://github.com/FFmpeg/FFmpeg)
- [gradio](https://github.com/gradio-app/gradio)
## 感谢所有贡献者的努力