# -*- coding:utf-8 -*- import argparse import os import traceback import torch from funasr import AutoModel from tools.asr.config import BaseASR from tools.my_utils import ASR_Logger funasr_component = { 'asr': { 'name': 'Paraformer-Large', 'size': 'speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch', }, 'vad': { 'name': 'FSMN-Monophone VAD', 'size': 'speech_fsmn_vad_zh-cn-16k-common-pytorch', }, 'punc': { 'name': 'Controllable Time-delay Transformer', 'size': 'punc_ct-transformer_zh-cn-common-vocab272727-pytorch', } } class FunASR(BaseASR): def __init__(self, model_size='large', device="cuda", precision="float16"): self.check_local_models() self.model = self.load_model() assert self.model is not None, ASR_Logger.error('模型不存在') @classmethod def check_local_models(self): ''' 启动时检查本地是否有 FunASR 相关模型. ''' self.model_path_dict = funasr_component for code, dic in self.model_path_dict.items(): model_name = dic['size'] model_path, flag = super().check_local_model( self, model_name = model_name, model_file = 'model.pt', cache_path = os.path.normpath(os.path.expanduser(f"~/.cache/modelscope/hub/")) ) if model_path: self.model_path_dict[code]['path'] = model_path else: # 没有本地路径时, 路径设置为网络链接 self.model_path_dict[code]['path'] = 'iic/' + model_name return self.model_path_dict def load_model(self): try: for code, dic in self.model_path_dict.items(): if os.path.exists(dic['path']): ASR_Logger.info(f"加载模型: 从 {dic['path']} 加载 {dic['name']} 模型.") if 'modelscope' in dic['path']: ASR_Logger.warning(f"可将 {dic['path']} 移动到 tools/asr/models/ 文件夹下.") else: ASR_Logger.warning(f"下载模型: 从 {dic['path']} 下载 {dic['name']} 模型.") model = AutoModel( model = self.model_path_dict['asr']['path'], model_revision = "v2.0.4", vad_model = self.model_path_dict['vad']['path'], vad_model_revision = "v2.0.4", punc_model = self.model_path_dict['punc']['path'], punc_model_revision = "v2.0.4", ) ASR_Logger.propagate = False # 避免 FunASR 库导致打印重复日志 if model.kwargs['device'] != 'cpu': device_name = torch.cuda.get_device_name(model.kwargs['device']) else: device_name = 'CPU' ASR_Logger.info(f"运行设备: {device_name}, 设定精度: --.") ASR_Logger.info(f"创建模型: FunASR 完成.\n") return model except: ASR_Logger.error(traceback.format_exc()) raise ValueError(ASR_Logger.error(f"模型加载失败 or 下载失败, 可访问 https://modelscope.cn/organization/iic 自行下载, 并放置于 tools/asr/models/ 文件夹下")) def inference(self, file_path, language='zh'): try: text = self.model.generate(input=file_path)[0]["text"] return text, language except: ASR_Logger.error(f"当前文件 {file_path} 转写失败, 可能不是有效的音频文件.") ASR_Logger.error(traceback.format_exc()) return '', '' if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("-i", "--input_file_or_folder", type=str, required=True, help="Input audio file path or folder contain audio files.") parser.add_argument("-o", "--output_folder", type=str, required=True, help="Output folder to store transcriptions.") parser.add_argument("-s", "--model_size", type=str, default='large', help="Model Size of FunASR is Large") parser.add_argument("-l", "--language", type=str, default='zh', choices=['zh'], help="Language of the audio files.") parser.add_argument("-p", "--precision", type=str, default='float16', choices=['float16','float32'], help="fp16 or fp32")#还没接入 cmd = parser.parse_args() ASR = FunASR( model_size = cmd.model_size, precision = cmd.precision, ) ASR.inference_file_or_folder( input_file_or_folder = cmd.input_file_or_folder, output_folder = cmd.output_folder, language = cmd.language, )