import json, yaml, warnings, torch import platform warnings.filterwarnings("ignore") torch.manual_seed(233333) import os, sys now_dir = os.getcwd() tmp = os.path.join(now_dir, "TEMP") os.makedirs(tmp, exist_ok=True) os.environ["TEMP"] = tmp import site site_packages_root = "%s/runtime/Lib/site-packages" % now_dir for path in site.getsitepackages(): if "site-packages" in path: site_packages_root = path os.environ["OPENBLAS_NUM_THREADS"] = "4" os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1" with open("%s/users.pth" % (site_packages_root), "w") as f: f.write( "%s\n%s/tools\n%s/tools/damo_asr\n%s/GPT_SoVITS\n%s/tools/uvr5" % (now_dir, now_dir, now_dir, now_dir, now_dir) ) import traceback sys.path.append(now_dir) import gradio as gr from subprocess import Popen from config import ( python_exec, infer_device, is_half, exp_root, webui_port_main, webui_port_infer_tts, webui_port_uvr5, webui_port_subfix, ) from tools.i18n.i18n import I18nAuto i18n = I18nAuto() from multiprocessing import cpu_count n_cpu = cpu_count() # 判断是否有能用来训练和加速推理的N卡 ngpu = torch.cuda.device_count() gpu_infos = [] mem = [] if_gpu_ok = False if torch.cuda.is_available() or ngpu != 0: for i in range(ngpu): gpu_name = torch.cuda.get_device_name(i) if any( value in gpu_name.upper() for value in [ "10", "16", "20", "30", "40", "A2", "A3", "A4", "P4", "A50", "500", "A60", "70", "80", "90", "M4", "T4", "TITAN", "L", ] ): # A10#A100#V100#A40#P40#M40#K80#A4500 if_gpu_ok = True # 至少有一张能用的N卡 gpu_infos.append("%s\t%s" % (i, gpu_name)) mem.append( int( torch.cuda.get_device_properties(i).total_memory / 1024 / 1024 / 1024 + 0.4 ) ) if if_gpu_ok and len(gpu_infos) > 0: gpu_info = "\n".join(gpu_infos) default_batch_size = min(mem) // 2 else: gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练") default_batch_size = 1 gpus = "-".join([i[0] for i in gpu_infos]) pretrained_sovits_name = "GPT_SoVITS/pretrained_models/s2G488k.pth" pretrained_gpt_name = ( "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" ) def get_weights_names(): SoVITS_names = [pretrained_sovits_name] for name in os.listdir(SoVITS_weight_root): if name.endswith(".pth"): SoVITS_names.append(name) GPT_names = [pretrained_gpt_name] for name in os.listdir(GPT_weight_root): if name.endswith(".ckpt"): GPT_names.append(name) return SoVITS_names, GPT_names SoVITS_weight_root = "SoVITS_weights" GPT_weight_root = "GPT_weights" os.makedirs(SoVITS_weight_root, exist_ok=True) os.makedirs(GPT_weight_root, exist_ok=True) SoVITS_names, GPT_names = get_weights_names() def change_choices(): SoVITS_names, GPT_names = get_weights_names() return {"choices": sorted(SoVITS_names), "__type__": "update"}, { "choices": sorted(GPT_names), "__type__": "update", } p_label = None p_uvr5 = None p_asr = None p_tts_inference = None system = platform.system() def kill_process(pid): if system == "Windows": cmd = "taskkill /t /f /pid %s" % pid else: cmd = "kill -9 %s" % pid print(cmd) os.system(cmd) ###linux上杀了webui,可能还会没杀干净。。。 # os.kill(p_label.pid,19)#主进程#控制台进程#python子进程###不好使,连主进程的webui一起关了,辣鸡 def change_label(if_label, path_list): global p_label if if_label == True and p_label == None: cmd = '"%s" tools/subfix_webui.py --load_list "%s" --webui_port %s' % ( python_exec, path_list, webui_port_subfix, ) yield "打标工具WebUI已开启" print(cmd) p_label = Popen(cmd, shell=True) elif if_label == False and p_label != None: kill_process(p_label.pid) p_label = None yield "打标工具WebUI已关闭" def change_uvr5(if_uvr5): global p_uvr5 if if_uvr5 == True and p_uvr5 == None: cmd = '"%s" tools/uvr5/webui.py "%s" %s %s' % ( python_exec, infer_device, is_half, webui_port_uvr5, ) yield "UVR5已开启" print(cmd) p_uvr5 = Popen(cmd, shell=True) elif if_uvr5 == False and p_uvr5 != None: kill_process(p_uvr5.pid) p_uvr5 = None yield "UVR5已关闭" def change_tts_inference( if_tts, bert_path, cnhubert_base_path, gpu_number, gpt_path, sovits_path ): global p_tts_inference if if_tts == True and p_tts_inference == None: os.environ["gpt_path"] = ( gpt_path if "/" in gpt_path else "%s/%s" % (GPT_weight_root, gpt_path) ) os.environ["sovits_path"] = ( sovits_path if "/" in sovits_path else "%s/%s" % (SoVITS_weight_root, sovits_path) ) os.environ["cnhubert_base_path"] = cnhubert_base_path os.environ["bert_path"] = bert_path os.environ["_CUDA_VISIBLE_DEVICES"] = gpu_number os.environ["is_half"] = str(is_half) os.environ["infer_ttswebui"] = str(webui_port_infer_tts) cmd = '"%s" GPT_SoVITS/inference_webui.py' % (python_exec) yield "TTS推理进程已开启" print(cmd) p_tts_inference = Popen(cmd, shell=True) elif if_tts == False and p_tts_inference != None: kill_process(p_tts_inference.pid) p_tts_inference = None yield "TTS推理进程已关闭" def open_asr(asr_inp_dir): global p_asr if p_asr == None: cmd = '"%s" tools/damo_asr/cmd-asr.py "%s"' % (python_exec, asr_inp_dir) yield "ASR任务开启:%s" % cmd, {"__type__": "update", "visible": False}, { "__type__": "update", "visible": True, } print(cmd) p_asr = Popen(cmd, shell=True) p_asr.wait() p_asr = None yield "ASR任务完成", {"__type__": "update", "visible": True}, { "__type__": "update", "visible": False, } else: yield "已有正在进行的ASR任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, { "__type__": "update", "visible": True, } def close_asr(): global p_asr if p_asr != None: kill_process(p_asr.pid) p_asr = None return ( "已终止ASR进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}, ) """ button1Ba_open.click(open1Ba, [batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D], [info1Bb,button1Ba_open,button1Ba_close]) button1Ba_close.click(close1Ba, [], [info1Bb,button1Ba_open,button1Ba_close]) """ p_train_SoVITS = None def open1Ba( batch_size, total_epoch, exp_name, text_low_lr_rate, if_save_latest, if_save_every_weights, save_every_epoch, gpu_numbers1Ba, pretrained_s2G, pretrained_s2D, ): global p_train_SoVITS if p_train_SoVITS == None: with open("GPT_SoVITS/configs/s2.json") as f: data = f.read() data = json.loads(data) s2_dir = "%s/%s" % (exp_root, exp_name) os.makedirs("%s/logs_s2" % (s2_dir), exist_ok=True) data["train"]["batch_size"] = batch_size data["train"]["epochs"] = total_epoch data["train"]["text_low_lr_rate"] = text_low_lr_rate data["train"]["pretrained_s2G"] = pretrained_s2G data["train"]["pretrained_s2D"] = pretrained_s2D data["train"]["if_save_latest"] = if_save_latest data["train"]["if_save_every_weights"] = if_save_every_weights data["train"]["save_every_epoch"] = save_every_epoch data["train"]["gpu_numbers"] = gpu_numbers1Ba data["data"]["exp_dir"] = data["s2_ckpt_dir"] = s2_dir data["save_weight_dir"] = SoVITS_weight_root data["name"] = exp_name tmp_config_path = "TEMP/tmp_s2.json" with open(tmp_config_path, "w") as f: f.write(json.dumps(data)) cmd = '"%s" GPT_SoVITS/s2_train.py --config "%s"' % ( python_exec, tmp_config_path, ) yield "SoVITS训练开始:%s" % cmd, {"__type__": "update", "visible": False}, { "__type__": "update", "visible": True, } print(cmd) p_train_SoVITS = Popen(cmd, shell=True) p_train_SoVITS.wait() p_train_SoVITS = None yield "SoVITS训练完成", {"__type__": "update", "visible": True}, { "__type__": "update", "visible": False, } else: yield "已有正在进行的SoVITS训练任务,需先终止才能开启下一次任务", { "__type__": "update", "visible": False, }, {"__type__": "update", "visible": True} def close1Ba(): global p_train_SoVITS if p_train_SoVITS != None: kill_process(p_train_SoVITS.pid) p_train_SoVITS = None return ( "已终止SoVITS训练", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}, ) p_train_GPT = None def open1Bb( batch_size, total_epoch, exp_name, if_save_latest, if_save_every_weights, save_every_epoch, gpu_numbers, pretrained_s1, ): global p_train_GPT if p_train_GPT == None: with open("GPT_SoVITS/configs/s1longer.yaml") as f: data = f.read() data = yaml.load(data, Loader=yaml.FullLoader) s1_dir = "%s/%s" % (exp_root, exp_name) os.makedirs("%s/logs_s1" % (s1_dir), exist_ok=True) data["train"]["batch_size"] = batch_size data["train"]["epochs"] = total_epoch data["pretrained_s1"] = pretrained_s1 data["train"]["save_every_n_epoch"] = save_every_epoch data["train"]["if_save_every_weights"] = if_save_every_weights data["train"]["if_save_latest"] = if_save_latest data["train"]["half_weights_save_dir"] = GPT_weight_root data["train"]["exp_name"] = exp_name data["train_semantic_path"] = "%s/6-name2semantic.tsv" % s1_dir data["train_phoneme_path"] = "%s/2-name2text.txt" % s1_dir data["output_dir"] = "%s/logs_s1" % s1_dir os.environ["_CUDA_VISIBLE_DEVICES"] = gpu_numbers.replace("-", ",") os.environ["hz"] = "25hz" tmp_config_path = "TEMP/tmp_s1.yaml" with open(tmp_config_path, "w") as f: f.write(yaml.dump(data, default_flow_style=False)) # cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" --train_semantic_path "%s/6-name2semantic.tsv" --train_phoneme_path "%s/2-name2text.txt" --output_dir "%s/logs_s1"'%(python_exec,tmp_config_path,s1_dir,s1_dir,s1_dir) cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" ' % ( python_exec, tmp_config_path, ) yield "GPT训练开始:%s" % cmd, {"__type__": "update", "visible": False}, { "__type__": "update", "visible": True, } print(cmd) p_train_GPT = Popen(cmd, shell=True) p_train_GPT.wait() p_train_GPT = None yield "GPT训练完成", {"__type__": "update", "visible": True}, { "__type__": "update", "visible": False, } else: yield "已有正在进行的GPT训练任务,需先终止才能开启下一次任务", { "__type__": "update", "visible": False, }, {"__type__": "update", "visible": True} def close1Bb(): global p_train_GPT if p_train_GPT != None: kill_process(p_train_GPT.pid) p_train_GPT = None return ( "已终止GPT训练", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}, ) ps_slice = [] def open_slice( inp, opt_root, threshold, min_length, min_interval, hop_size, max_sil_kept, _max, alpha, n_parts, ): global ps_slice if os.path.exists(inp) == False: yield "输入路径不存在", {"__type__": "update", "visible": True}, { "__type__": "update", "visible": False, } return if os.path.isfile(inp): n_parts = 1 elif os.path.isdir(inp): pass else: yield "输入路径存在但既不是文件也不是文件夹", {"__type__": "update", "visible": True}, { "__type__": "update", "visible": False, } return if ps_slice == []: for i_part in range(n_parts): cmd = ( '"%s" tools/slice_audio.py "%s" "%s" %s %s %s %s %s %s %s %s %s' "" % ( python_exec, inp, opt_root, threshold, min_length, min_interval, hop_size, max_sil_kept, _max, alpha, i_part, n_parts, ) ) print(cmd) p = Popen(cmd, shell=True) ps_slice.append(p) yield "切割执行中", {"__type__": "update", "visible": False}, { "__type__": "update", "visible": True, } for p in ps_slice: p.wait() ps_slice = [] yield "切割结束", {"__type__": "update", "visible": True}, { "__type__": "update", "visible": False, } else: yield "已有正在进行的切割任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, { "__type__": "update", "visible": True, } def close_slice(): global ps_slice if ps_slice != []: for p_slice in ps_slice: try: kill_process(p_slice.pid) except: traceback.print_exc() ps_slice = [] return ( "已终止所有切割进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}, ) """ inp_text= os.environ.get("inp_text") inp_wav_dir= os.environ.get("inp_wav_dir") exp_name= os.environ.get("exp_name") i_part= os.environ.get("i_part") all_parts= os.environ.get("all_parts") os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES") opt_dir= os.environ.get("opt_dir")#"/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name bert_pretrained_dir= os.environ.get("bert_pretrained_dir")#"/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large" """ ps1a = [] def open1a(inp_text, inp_wav_dir, exp_name, gpu_numbers, bert_pretrained_dir): global ps1a if ps1a == []: config = { "inp_text": inp_text, "inp_wav_dir": inp_wav_dir, "exp_name": exp_name, "opt_dir": "%s/%s" % (exp_root, exp_name), "bert_pretrained_dir": bert_pretrained_dir, } gpu_names = gpu_numbers.split("-") all_parts = len(gpu_names) for i_part in range(all_parts): config.update( { "i_part": str(i_part), "all_parts": str(all_parts), "_CUDA_VISIBLE_DEVICES": gpu_names[i_part], "is_half": str(is_half), } ) os.environ.update(config) cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py' % python_exec print(cmd) p = Popen(cmd, shell=True) ps1a.append(p) yield "文本进程执行中", {"__type__": "update", "visible": False}, { "__type__": "update", "visible": True, } for p in ps1a: p.wait() ps1a = [] yield "文本进程结束", {"__type__": "update", "visible": True}, { "__type__": "update", "visible": False, } else: yield "已有正在进行的文本任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, { "__type__": "update", "visible": True, } def close1a(): global ps1a if ps1a != []: for p1a in ps1a: try: kill_process(p1a.pid) except: traceback.print_exc() ps1a = [] return ( "已终止所有1a进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}, ) """ inp_text= os.environ.get("inp_text") inp_wav_dir= os.environ.get("inp_wav_dir") exp_name= os.environ.get("exp_name") i_part= os.environ.get("i_part") all_parts= os.environ.get("all_parts") os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES") opt_dir= os.environ.get("opt_dir") cnhubert.cnhubert_base_path= os.environ.get("cnhubert_base_dir") """ ps1b = [] def open1b(inp_text, inp_wav_dir, exp_name, gpu_numbers, ssl_pretrained_dir): global ps1b if ps1b == []: config = { "inp_text": inp_text, "inp_wav_dir": inp_wav_dir, "exp_name": exp_name, "opt_dir": "%s/%s" % (exp_root, exp_name), "cnhubert_base_dir": ssl_pretrained_dir, "is_half": str(is_half), } gpu_names = gpu_numbers.split("-") all_parts = len(gpu_names) for i_part in range(all_parts): config.update( { "i_part": str(i_part), "all_parts": str(all_parts), "_CUDA_VISIBLE_DEVICES": gpu_names[i_part], } ) os.environ.update(config) cmd = ( '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py' % python_exec ) print(cmd) p = Popen(cmd, shell=True) ps1b.append(p) yield "SSL提取进程执行中", {"__type__": "update", "visible": False}, { "__type__": "update", "visible": True, } for p in ps1b: p.wait() ps1b = [] yield "SSL提取进程结束", {"__type__": "update", "visible": True}, { "__type__": "update", "visible": False, } else: yield "已有正在进行的SSL提取任务,需先终止才能开启下一次任务", { "__type__": "update", "visible": False, }, {"__type__": "update", "visible": True} def close1b(): global ps1b if ps1b != []: for p1b in ps1b: try: kill_process(p1b.pid) except: traceback.print_exc() ps1b = [] return ( "已终止所有1b进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}, ) """ inp_text= os.environ.get("inp_text") exp_name= os.environ.get("exp_name") i_part= os.environ.get("i_part") all_parts= os.environ.get("all_parts") os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES") opt_dir= os.environ.get("opt_dir") pretrained_s2G= os.environ.get("pretrained_s2G") """ ps1c = [] def open1c(inp_text, exp_name, gpu_numbers, pretrained_s2G_path): global ps1c if ps1c == []: config = { "inp_text": inp_text, "exp_name": exp_name, "opt_dir": "%s/%s" % (exp_root, exp_name), "pretrained_s2G": pretrained_s2G_path, "s2config_path": "GPT_SoVITS/configs/s2.json", "is_half": str(is_half), } gpu_names = gpu_numbers.split("-") all_parts = len(gpu_names) for i_part in range(all_parts): config.update( { "i_part": str(i_part), "all_parts": str(all_parts), "_CUDA_VISIBLE_DEVICES": gpu_names[i_part], } ) os.environ.update(config) cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py' % python_exec print(cmd) p = Popen(cmd, shell=True) ps1c.append(p) yield "语义token提取进程执行中", {"__type__": "update", "visible": False}, { "__type__": "update", "visible": True, } for p in ps1c: p.wait() ps1c = [] yield "语义token提取进程结束", {"__type__": "update", "visible": True}, { "__type__": "update", "visible": False, } else: yield "已有正在进行的语义token提取任务,需先终止才能开启下一次任务", { "__type__": "update", "visible": False, }, {"__type__": "update", "visible": True} def close1c(): global ps1c if ps1c != []: for p1c in ps1c: try: kill_process(p1c.pid) except: traceback.print_exc() ps1c = [] return ( "已终止所有语义token进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}, ) #####inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,cnhubert_base_dir,pretrained_s2G ps1abc = [] def open1abc( inp_text, inp_wav_dir, exp_name, gpu_numbers1a, gpu_numbers1Ba, gpu_numbers1c, bert_pretrained_dir, ssl_pretrained_dir, pretrained_s2G_path, ): global ps1abc if ps1abc == []: opt_dir = "%s/%s" % (exp_root, exp_name) try: #############################1a path_text = "%s/2-name2text.txt" % opt_dir if os.path.exists(path_text) == False: config = { "inp_text": inp_text, "inp_wav_dir": inp_wav_dir, "exp_name": exp_name, "opt_dir": opt_dir, "bert_pretrained_dir": bert_pretrained_dir, "is_half": str(is_half), } gpu_names = gpu_numbers1a.split("-") all_parts = len(gpu_names) for i_part in range(all_parts): config.update( { "i_part": str(i_part), "all_parts": str(all_parts), "_CUDA_VISIBLE_DEVICES": gpu_names[i_part], } ) os.environ.update(config) cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py' % python_exec print(cmd) p = Popen(cmd, shell=True) ps1abc.append(p) yield "进度:1a-ing", {"__type__": "update", "visible": False}, { "__type__": "update", "visible": True, } for p in ps1abc: p.wait() opt = [] for i_part in range( all_parts ): # txt_path="%s/2-name2text-%s.txt"%(opt_dir,i_part) txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part) with open(txt_path, "r", encoding="utf8") as f: opt += f.read().strip("\n").split("\n") os.remove(txt_path) with open(path_text, "w", encoding="utf8") as f: f.write("\n".join(opt) + "\n") yield "进度:1a-done", {"__type__": "update", "visible": False}, { "__type__": "update", "visible": True, } ps1abc = [] #############################1b config = { "inp_text": inp_text, "inp_wav_dir": inp_wav_dir, "exp_name": exp_name, "opt_dir": opt_dir, "cnhubert_base_dir": ssl_pretrained_dir, } gpu_names = gpu_numbers1Ba.split("-") all_parts = len(gpu_names) for i_part in range(all_parts): config.update( { "i_part": str(i_part), "all_parts": str(all_parts), "_CUDA_VISIBLE_DEVICES": gpu_names[i_part], } ) os.environ.update(config) cmd = ( '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py' % python_exec ) print(cmd) p = Popen(cmd, shell=True) ps1abc.append(p) yield "进度:1a-done, 1b-ing", {"__type__": "update", "visible": False}, { "__type__": "update", "visible": True, } for p in ps1abc: p.wait() yield "进度:1a1b-done", {"__type__": "update", "visible": False}, { "__type__": "update", "visible": True, } ps1abc = [] #############################1c path_semantic = "%s/6-name2semantic.tsv" % opt_dir if os.path.exists(path_semantic) == False: config = { "inp_text": inp_text, "exp_name": exp_name, "opt_dir": opt_dir, "pretrained_s2G": pretrained_s2G_path, "s2config_path": "GPT_SoVITS/configs/s2.json", } gpu_names = gpu_numbers1c.split("-") all_parts = len(gpu_names) for i_part in range(all_parts): config.update( { "i_part": str(i_part), "all_parts": str(all_parts), "_CUDA_VISIBLE_DEVICES": gpu_names[i_part], } ) os.environ.update(config) cmd = ( '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py' % python_exec ) print(cmd) p = Popen(cmd, shell=True) ps1abc.append(p) yield "进度:1a1b-done, 1cing", {"__type__": "update", "visible": False}, { "__type__": "update", "visible": True, } for p in ps1abc: p.wait() opt = ["item_name semantic_audio"] for i_part in range(all_parts): semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part) with open(semantic_path, "r", encoding="utf8") as f: opt += f.read().strip("\n").split("\n") os.remove(semantic_path) with open(path_semantic, "w", encoding="utf8") as f: f.write("\n".join(opt) + "\n") yield "进度:all-done", {"__type__": "update", "visible": False}, { "__type__": "update", "visible": True, } ps1abc = [] yield "一键三连进程结束", {"__type__": "update", "visible": True}, { "__type__": "update", "visible": False, } except: traceback.print_exc() close1abc() yield "一键三连中途报错", {"__type__": "update", "visible": True}, { "__type__": "update", "visible": False, } else: yield "已有正在进行的一键三连任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, { "__type__": "update", "visible": True, } def close1abc(): global ps1abc if ps1abc != []: for p1abc in ps1abc: try: kill_process(p1abc.pid) except: traceback.print_exc() ps1abc = [] return ( "已终止所有一键三连进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}, ) with gr.Blocks(title="GPT-SoVITS WebUI") as app: gr.Markdown( value="本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.
如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE." ) with gr.Tabs(): with gr.TabItem("0-前置数据集获取工具"): # 提前随机切片防止uvr5爆内存->uvr5->slicer->asr->打标 gr.Markdown(value="0a-UVR5人声伴奏分离&去混响去延迟工具") with gr.Row(): if_uvr5 = gr.Checkbox(label="是否开启UVR5-WebUI", show_label=True) uvr5_info = gr.Textbox(label="UVR5进程输出信息") gr.Markdown(value="0b-语音切分工具") with gr.Row(): with gr.Row(): slice_inp_path = gr.Textbox(label="音频自动切分输入路径,可文件可文件夹", value="") slice_opt_root = gr.Textbox( label="切分后的子音频的输出根目录", value="output/slicer_opt" ) threshold = gr.Textbox( label="threshold:音量小于这个值视作静音的备选切割点", value="-34" ) min_length = gr.Textbox( label="min_length:每段最小多长,如果第一段太短一直和后面段连起来直到超过这个值", value="4000" ) min_interval = gr.Textbox(label="min_interval:最短切割间隔", value="300") hop_size = gr.Textbox( label="hop_size:怎么算音量曲线,越小精度越大计算量越高(不是精度越大效果越好)", value="10" ) max_sil_kept = gr.Textbox( label="max_sil_kept:切完后静音最多留多长", value="500" ) with gr.Row(): open_slicer_button = gr.Button( "开启语音切割", variant="primary", visible=True ) close_slicer_button = gr.Button( "终止语音切割", variant="primary", visible=False ) _max = gr.Slider( minimum=0, maximum=1, step=0.05, label="max:归一化后最大值多少", value=0.9, interactive=True, ) alpha = gr.Slider( minimum=0, maximum=1, step=0.05, label="alpha_mix:混多少比例归一化后音频进来", value=0.25, interactive=True, ) n_process = gr.Slider( minimum=1, maximum=n_cpu, step=1, label="切割使用的进程数", value=4, interactive=True, ) slicer_info = gr.Textbox(label="语音切割进程输出信息") gr.Markdown(value="0c-中文批量离线ASR工具") with gr.Row(): open_asr_button = gr.Button( "开启离线批量ASR", variant="primary", visible=True ) close_asr_button = gr.Button( "终止ASR进程", variant="primary", visible=False ) asr_inp_dir = gr.Textbox( label="批量ASR(中文only)输入文件夹路径", value="D:\\RVC1006\\GPT-SoVITS\\raw\\xxx", interactive=True, ) asr_info = gr.Textbox(label="ASR进程输出信息") gr.Markdown(value="0d-语音文本校对标注工具") with gr.Row(): if_label = gr.Checkbox(label="是否开启打标WebUI", show_label=True) path_list = gr.Textbox( label="打标数据标注文件路径", value="D:\\RVC1006\\GPT-SoVITS\\raw\\xxx.list", interactive=True, ) label_info = gr.Textbox(label="打标工具进程输出信息") if_label.change(change_label, [if_label, path_list], [label_info]) if_uvr5.change(change_uvr5, [if_uvr5], [uvr5_info]) open_asr_button.click( open_asr, [asr_inp_dir], [asr_info, open_asr_button, close_asr_button] ) close_asr_button.click( close_asr, [], [asr_info, open_asr_button, close_asr_button] ) open_slicer_button.click( open_slice, [ slice_inp_path, slice_opt_root, threshold, min_length, min_interval, hop_size, max_sil_kept, _max, alpha, n_process, ], [slicer_info, open_slicer_button, close_slicer_button], ) close_slicer_button.click( close_slice, [], [slicer_info, open_slicer_button, close_slicer_button] ) with gr.TabItem("1-GPT-SoVITS-TTS"): with gr.Row(): exp_name = gr.Textbox(label="*实验/模型名", value="xxx", interactive=True) gpu_info = gr.Textbox( label="显卡信息", value=gpu_info, visible=True, interactive=False ) pretrained_s2G = gr.Textbox( label="预训练的SoVITS-G模型路径", value="GPT_SoVITS/pretrained_models/s2G488k.pth", interactive=True, ) pretrained_s2D = gr.Textbox( label="预训练的SoVITS-D模型路径", value="GPT_SoVITS/pretrained_models/s2D488k.pth", interactive=True, ) pretrained_s1 = gr.Textbox( label="预训练的GPT模型路径", value="GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt", interactive=True, ) with gr.TabItem("1A-训练集格式化工具"): gr.Markdown(value="输出logs/实验名目录下应有23456开头的文件和文件夹") with gr.Row(): inp_text = gr.Textbox( label="*文本标注文件", value=r"D:\RVC1006\GPT-SoVITS\raw\xxx.list", interactive=True, ) inp_wav_dir = gr.Textbox( label="*训练集音频文件目录", value=r"D:\RVC1006\GPT-SoVITS\raw\xxx", interactive=True, ) gr.Markdown(value="1Aa-文本内容") with gr.Row(): gpu_numbers1a = gr.Textbox( label="GPU卡号以-分割,每个卡号一个进程", value="%s-%s" % (gpus, gpus), interactive=True, ) bert_pretrained_dir = gr.Textbox( label="预训练的中文BERT模型路径", value="GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large", interactive=False, ) button1a_open = gr.Button("开启文本获取", variant="primary", visible=True) button1a_close = gr.Button( "终止文本获取进程", variant="primary", visible=False ) info1a = gr.Textbox(label="文本进程输出信息") gr.Markdown(value="1Ab-SSL自监督特征提取") with gr.Row(): gpu_numbers1Ba = gr.Textbox( label="GPU卡号以-分割,每个卡号一个进程", value="%s-%s" % (gpus, gpus), interactive=True, ) cnhubert_base_dir = gr.Textbox( label="预训练的SSL模型路径", value="GPT_SoVITS/pretrained_models/chinese-hubert-base", interactive=False, ) button1b_open = gr.Button( "开启SSL提取", variant="primary", visible=True ) button1b_close = gr.Button( "终止SSL提取进程", variant="primary", visible=False ) info1b = gr.Textbox(label="SSL进程输出信息") gr.Markdown(value="1Ac-语义token提取") with gr.Row(): gpu_numbers1c = gr.Textbox( label="GPU卡号以-分割,每个卡号一个进程", value="%s-%s" % (gpus, gpus), interactive=True, ) button1c_open = gr.Button( "开启语义token提取", variant="primary", visible=True ) button1c_close = gr.Button( "终止语义token提取进程", variant="primary", visible=False ) info1c = gr.Textbox(label="语义token提取进程输出信息") gr.Markdown(value="1Aabc-训练集格式化一键三连") with gr.Row(): button1abc_open = gr.Button( "开启一键三连", variant="primary", visible=True ) button1abc_close = gr.Button( "终止一键三连", variant="primary", visible=False ) info1abc = gr.Textbox(label="一键三连进程输出信息") button1a_open.click( open1a, [inp_text, inp_wav_dir, exp_name, gpu_numbers1a, bert_pretrained_dir], [info1a, button1a_open, button1a_close], ) button1a_close.click(close1a, [], [info1a, button1a_open, button1a_close]) button1b_open.click( open1b, [inp_text, inp_wav_dir, exp_name, gpu_numbers1Ba, cnhubert_base_dir], [info1b, button1b_open, button1b_close], ) button1b_close.click(close1b, [], [info1b, button1b_open, button1b_close]) button1c_open.click( open1c, [inp_text, exp_name, gpu_numbers1c, pretrained_s2G], [info1c, button1c_open, button1c_close], ) button1c_close.click(close1c, [], [info1c, button1c_open, button1c_close]) button1abc_open.click( open1abc, [ inp_text, inp_wav_dir, exp_name, gpu_numbers1a, gpu_numbers1Ba, gpu_numbers1c, bert_pretrained_dir, cnhubert_base_dir, pretrained_s2G, ], [info1abc, button1abc_open, button1abc_close], ) button1abc_close.click( close1abc, [], [info1abc, button1abc_open, button1abc_close] ) with gr.TabItem("1B-微调训练"): gr.Markdown(value="1Ba-SoVITS训练。用于分享的模型文件输出在SoVITS_weights下。") with gr.Row(): batch_size = gr.Slider( minimum=1, maximum=40, step=1, label=i18n("每张显卡的batch_size"), value=default_batch_size, interactive=True, ) total_epoch = gr.Slider( minimum=1, maximum=20, step=1, label=i18n("总训练轮数total_epoch,不建议太高"), value=8, interactive=True, ) text_low_lr_rate = gr.Slider( minimum=0.2, maximum=0.6, step=0.05, label="文本模块学习率权重", value=0.4, interactive=True, ) save_every_epoch = gr.Slider( minimum=1, maximum=50, step=1, label=i18n("保存频率save_every_epoch"), value=4, interactive=True, ) if_save_latest = gr.Checkbox( label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), value=True, interactive=True, show_label=True, ) if_save_every_weights = gr.Checkbox( label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), value=True, interactive=True, show_label=True, ) gpu_numbers1Ba = gr.Textbox( label="GPU卡号以-分割,每个卡号一个进程", value="%s" % (gpus), interactive=True, ) with gr.Row(): button1Ba_open = gr.Button( "开启SoVITS训练", variant="primary", visible=True ) button1Ba_close = gr.Button( "终止SoVITS训练", variant="primary", visible=False ) info1Ba = gr.Textbox(label="SoVITS训练进程输出信息") gr.Markdown(value="1Bb-GPT训练。用于分享的模型文件输出在GPT_weights下。") with gr.Row(): batch_size1Bb = gr.Slider( minimum=1, maximum=40, step=1, label=i18n("每张显卡的batch_size"), value=default_batch_size, interactive=True, ) total_epoch1Bb = gr.Slider( minimum=2, maximum=100, step=1, label=i18n("总训练轮数total_epoch"), value=15, interactive=True, ) if_save_latest1Bb = gr.Checkbox( label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), value=True, interactive=True, show_label=True, ) if_save_every_weights1Bb = gr.Checkbox( label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), value=True, interactive=True, show_label=True, ) save_every_epoch1Bb = gr.Slider( minimum=1, maximum=50, step=1, label=i18n("保存频率save_every_epoch"), value=5, interactive=True, ) gpu_numbers1Bb = gr.Textbox( label="GPU卡号以-分割,每个卡号一个进程", value="%s" % (gpus), interactive=True, ) with gr.Row(): button1Bb_open = gr.Button( "开启GPT训练", variant="primary", visible=True ) button1Bb_close = gr.Button( "终止GPT训练", variant="primary", visible=False ) info1Bb = gr.Textbox(label="GPT训练进程输出信息") button1Ba_open.click( open1Ba, [ batch_size, total_epoch, exp_name, text_low_lr_rate, if_save_latest, if_save_every_weights, save_every_epoch, gpu_numbers1Ba, pretrained_s2G, pretrained_s2D, ], [info1Ba, button1Ba_open, button1Ba_close], ) button1Ba_close.click( close1Ba, [], [info1Ba, button1Ba_open, button1Ba_close] ) button1Bb_open.click( open1Bb, [ batch_size1Bb, total_epoch1Bb, exp_name, if_save_latest1Bb, if_save_every_weights1Bb, save_every_epoch1Bb, gpu_numbers1Bb, pretrained_s1, ], [info1Bb, button1Bb_open, button1Bb_close], ) button1Bb_close.click( close1Bb, [], [info1Bb, button1Bb_open, button1Bb_close] ) with gr.TabItem("1C-推理"): gr.Markdown( value="选择训练完存放在SoVITS_weights和GPT_weights下的模型。默认的一个是底模,体验5秒Zero Shot TTS用。" ) with gr.Row(): GPT_dropdown = gr.Dropdown( label="*GPT模型列表", choices=sorted(GPT_names), value=pretrained_gpt_name, ) SoVITS_dropdown = gr.Dropdown( label="*SoVITS模型列表", choices=sorted(SoVITS_names), value=pretrained_sovits_name, ) gpu_number_1C = gr.Textbox( label="GPU卡号,只能填1个整数", value=gpus, interactive=True ) refresh_button = gr.Button("刷新模型路径", variant="primary") refresh_button.click( fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown], ) with gr.Row(): if_tts = gr.Checkbox(label="是否开启TTS推理WebUI", show_label=True) tts_info = gr.Textbox(label="TTS推理WebUI进程输出信息") if_tts.change( change_tts_inference, [ if_tts, bert_pretrained_dir, cnhubert_base_dir, gpu_number_1C, GPT_dropdown, SoVITS_dropdown, ], [tts_info], ) with gr.TabItem("2-GPT-SoVITS-变声"): gr.Markdown(value="施工中,请静候佳音") """ os.environ["gpt_path"]=gpt_path os.environ["sovits_path"]=sovits_path#bert_pretrained_dir os.environ["cnhubert_base_path"]=cnhubert_base_path#cnhubert_base_dir os.environ["bert_path"]=bert_path os.environ["_CUDA_VISIBLE_DEVICES"]=gpu_number """ app.queue(concurrency_count=511, max_size=1022).launch( server_name="0.0.0.0", inbrowser=True, server_port=webui_port_main, quiet=True, )