""" 按中英混合识别 按日英混合识别 多语种启动切分识别语种 全部按中文识别 全部按英文识别 全部按日文识别 """ import json import logging import os import random import re import sys now_dir = os.getcwd() sys.path.append(now_dir) sys.path.append("%s/GPT_SoVITS" % (now_dir)) logging.getLogger("markdown_it").setLevel(logging.ERROR) logging.getLogger("urllib3").setLevel(logging.ERROR) logging.getLogger("httpcore").setLevel(logging.ERROR) logging.getLogger("httpx").setLevel(logging.ERROR) logging.getLogger("asyncio").setLevel(logging.ERROR) logging.getLogger("charset_normalizer").setLevel(logging.ERROR) logging.getLogger("torchaudio._extension").setLevel(logging.ERROR) import torch try: import gradio.analytics as analytics analytics.version_check = lambda: None except: ... infer_ttswebui = os.environ.get("infer_ttswebui", 9872) infer_ttswebui = int(infer_ttswebui) is_share = os.environ.get("is_share", "False") is_share = eval(is_share) if "_CUDA_VISIBLE_DEVICES" in os.environ: os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available() gpt_path = os.environ.get("gpt_path", None) sovits_path = os.environ.get("sovits_path", None) cnhubert_base_path = os.environ.get("cnhubert_base_path", None) bert_path = os.environ.get("bert_path", None) version = model_version = os.environ.get("version", "v2") import gradio as gr from TTS_infer_pack.text_segmentation_method import get_method from TTS_infer_pack.TTS import NO_PROMPT_ERROR, TTS, TTS_Config from tools.i18n.i18n import I18nAuto, scan_language_list language = os.environ.get("language", "Auto") language = sys.argv[-1] if sys.argv[-1] in scan_language_list() else language i18n = I18nAuto(language=language) # os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。 if torch.cuda.is_available(): device = "cuda" # elif torch.backends.mps.is_available(): # device = "mps" else: device = "cpu" # is_half = False # device = "cpu" dict_language_v1 = { i18n("中文"): "all_zh", # 全部按中文识别 i18n("英文"): "en", # 全部按英文识别#######不变 i18n("日文"): "all_ja", # 全部按日文识别 i18n("中英混合"): "zh", # 按中英混合识别####不变 i18n("日英混合"): "ja", # 按日英混合识别####不变 i18n("多语种混合"): "auto", # 多语种启动切分识别语种 } dict_language_v2 = { i18n("中文"): "all_zh", # 全部按中文识别 i18n("英文"): "en", # 全部按英文识别#######不变 i18n("日文"): "all_ja", # 全部按日文识别 i18n("粤语"): "all_yue", # 全部按中文识别 i18n("韩文"): "all_ko", # 全部按韩文识别 i18n("中英混合"): "zh", # 按中英混合识别####不变 i18n("日英混合"): "ja", # 按日英混合识别####不变 i18n("粤英混合"): "yue", # 按粤英混合识别####不变 i18n("韩英混合"): "ko", # 按韩英混合识别####不变 i18n("多语种混合"): "auto", # 多语种启动切分识别语种 i18n("多语种混合(粤语)"): "auto_yue", # 多语种启动切分识别语种 } dict_language = dict_language_v1 if version == "v1" else dict_language_v2 cut_method = { i18n("不切"): "cut0", i18n("凑四句一切"): "cut1", i18n("凑50字一切"): "cut2", i18n("按中文句号。切"): "cut3", i18n("按英文句号.切"): "cut4", i18n("按标点符号切"): "cut5", } tts_config = TTS_Config("GPT_SoVITS/configs/tts_infer.yaml") tts_config.device = device tts_config.is_half = is_half tts_config.version = version if gpt_path is not None: tts_config.t2s_weights_path = gpt_path if sovits_path is not None: tts_config.vits_weights_path = sovits_path if cnhubert_base_path is not None: tts_config.cnhuhbert_base_path = cnhubert_base_path if bert_path is not None: tts_config.bert_base_path = bert_path print(tts_config) tts_pipeline = TTS(tts_config) gpt_path = tts_config.t2s_weights_path sovits_path = tts_config.vits_weights_path version = tts_config.version def inference( text, text_lang, ref_audio_path, aux_ref_audio_paths, prompt_text, prompt_lang, top_k, top_p, temperature, text_split_method, batch_size, speed_factor, ref_text_free, split_bucket, fragment_interval, seed, keep_random, parallel_infer, repetition_penalty, sample_steps, super_sampling, ): seed = -1 if keep_random else seed actual_seed = seed if seed not in [-1, "", None] else random.randint(0, 2**32 - 1) inputs = { "text": text, "text_lang": dict_language[text_lang], "ref_audio_path": ref_audio_path, "aux_ref_audio_paths": [item.name for item in aux_ref_audio_paths] if aux_ref_audio_paths is not None else [], "prompt_text": prompt_text if not ref_text_free else "", "prompt_lang": dict_language[prompt_lang], "top_k": top_k, "top_p": top_p, "temperature": temperature, "text_split_method": cut_method[text_split_method], "batch_size": int(batch_size), "speed_factor": float(speed_factor), "split_bucket": split_bucket, "return_fragment": False, "fragment_interval": fragment_interval, "seed": actual_seed, "parallel_infer": parallel_infer, "repetition_penalty": repetition_penalty, "sample_steps": int(sample_steps), "super_sampling": super_sampling, } try: for item in tts_pipeline.run(inputs): yield item, actual_seed except NO_PROMPT_ERROR: gr.Warning(i18n("V3不支持无参考文本模式,请填写参考文本!")) def custom_sort_key(s): # 使用正则表达式提取字符串中的数字部分和非数字部分 parts = re.split("(\d+)", s) # 将数字部分转换为整数,非数字部分保持不变 parts = [int(part) if part.isdigit() else part for part in parts] return parts def change_choices(): SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root) return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, { "choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update", } path_sovits_v3 = "GPT_SoVITS/pretrained_models/s2Gv3.pth" pretrained_sovits_name = [ "GPT_SoVITS/pretrained_models/s2G488k.pth", "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth", path_sovits_v3, ] pretrained_gpt_name = [ "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt", "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", "GPT_SoVITS/pretrained_models/s1v3.ckpt", ] _ = [[], []] for i in range(3): if os.path.exists(pretrained_gpt_name[i]): _[0].append(pretrained_gpt_name[i]) if os.path.exists(pretrained_sovits_name[i]): _[-1].append(pretrained_sovits_name[i]) pretrained_gpt_name, pretrained_sovits_name = _ if os.path.exists("./weight.json"): pass else: with open("./weight.json", "w", encoding="utf-8") as file: json.dump({"GPT": {}, "SoVITS": {}}, file) with open("./weight.json", "r", encoding="utf-8") as file: weight_data = file.read() weight_data = json.loads(weight_data) gpt_path = os.environ.get("gpt_path", weight_data.get("GPT", {}).get(version, pretrained_gpt_name)) sovits_path = os.environ.get("sovits_path", weight_data.get("SoVITS", {}).get(version, pretrained_sovits_name)) if isinstance(gpt_path, list): gpt_path = gpt_path[0] if isinstance(sovits_path, list): sovits_path = sovits_path[0] SoVITS_weight_root = ["SoVITS_weights", "SoVITS_weights_v2", "SoVITS_weights_v3"] GPT_weight_root = ["GPT_weights", "GPT_weights_v2", "GPT_weights_v3"] for path in SoVITS_weight_root + GPT_weight_root: os.makedirs(path, exist_ok=True) def get_weights_names(GPT_weight_root, SoVITS_weight_root): SoVITS_names = [i for i in pretrained_sovits_name] for path in SoVITS_weight_root: for name in os.listdir(path): if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (path, name)) GPT_names = [i for i in pretrained_gpt_name] for path in GPT_weight_root: for name in os.listdir(path): if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (path, name)) return SoVITS_names, GPT_names SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root) from process_ckpt import get_sovits_version_from_path_fast def change_sovits_weights(sovits_path, prompt_language=None, text_language=None): global version, model_version, dict_language, if_lora_v3 version, model_version, if_lora_v3 = get_sovits_version_from_path_fast(sovits_path) # print(sovits_path,version, model_version, if_lora_v3) if if_lora_v3 == True and is_exist_s2gv3 == False: # info = "GPT_SoVITS/pretrained_models/s2Gv3.pth" + i18n("SoVITS V3 底模缺失,无法加载相应 LoRA 权重") gr.Warning(info) raise FileExistsError(info) dict_language = dict_language_v1 if version == "v1" else dict_language_v2 if prompt_language is not None and text_language is not None: if prompt_language in list(dict_language.keys()): prompt_text_update, prompt_language_update = ( {"__type__": "update"}, {"__type__": "update", "value": prompt_language}, ) else: prompt_text_update = {"__type__": "update", "value": ""} prompt_language_update = {"__type__": "update", "value": i18n("中文")} if text_language in list(dict_language.keys()): text_update, text_language_update = {"__type__": "update"}, {"__type__": "update", "value": text_language} else: text_update = {"__type__": "update", "value": ""} text_language_update = {"__type__": "update", "value": i18n("中文")} if model_version == "v3": visible_sample_steps = True visible_inp_refs = False else: visible_sample_steps = False visible_inp_refs = True # prompt_language,text_language,prompt_text,prompt_language,text,text_language,inp_refs,ref_text_free, yield ( {"__type__": "update", "choices": list(dict_language.keys())}, {"__type__": "update", "choices": list(dict_language.keys())}, prompt_text_update, prompt_language_update, text_update, text_language_update, {"__type__": "update", "interactive": visible_sample_steps, "value": 32}, {"__type__": "update", "visible": visible_inp_refs}, {"__type__": "update", "interactive": True if model_version != "v3" else False}, {"__type__": "update", "value": i18n("模型加载中,请等待"), "interactive": False}, ) tts_pipeline.init_vits_weights(sovits_path) yield ( {"__type__": "update", "choices": list(dict_language.keys())}, {"__type__": "update", "choices": list(dict_language.keys())}, prompt_text_update, prompt_language_update, text_update, text_language_update, {"__type__": "update", "interactive": visible_sample_steps, "value": 32}, {"__type__": "update", "visible": visible_inp_refs}, {"__type__": "update", "interactive": True if model_version != "v3" else False}, {"__type__": "update", "value": i18n("合成语音"), "interactive": True}, ) with open("./weight.json") as f: data = f.read() data = json.loads(data) data["SoVITS"][version] = sovits_path with open("./weight.json", "w") as f: f.write(json.dumps(data)) with gr.Blocks(title="GPT-SoVITS WebUI") as app: gr.Markdown( value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.") + "
" + i18n("如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.") ) with gr.Column(): # with gr.Group(): gr.Markdown(value=i18n("模型切换")) with gr.Row(): GPT_dropdown = gr.Dropdown( label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=gpt_path, interactive=True, ) SoVITS_dropdown = gr.Dropdown( label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True, ) refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary") refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown]) with gr.Row(): with gr.Column(): gr.Markdown(value=i18n("*请上传并填写参考信息")) with gr.Row(): inp_ref = gr.Audio(label=i18n("主参考音频(请上传3~10秒内参考音频,超过会报错!)"), type="filepath") inp_refs = gr.File( label=i18n("辅参考音频(可选多个,或不选)"), file_count="multiple", visible=True if model_version != "v3" else False, ) prompt_text = gr.Textbox(label=i18n("主参考音频的文本"), value="", lines=2) with gr.Row(): prompt_language = gr.Dropdown( label=i18n("主参考音频的语种"), choices=list(dict_language.keys()), value=i18n("中文") ) with gr.Column(): ref_text_free = gr.Checkbox( label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。"), value=False, interactive=True if model_version != "v3" else False, show_label=True, ) gr.Markdown( i18n("使用无参考文本模式时建议使用微调的GPT") + "
" + i18n("听不清参考音频说的啥(不晓得写啥)可以开。开启后无视填写的参考文本。") ) with gr.Column(): gr.Markdown(value=i18n("*请填写需要合成的目标文本和语种模式")) text = gr.Textbox(label=i18n("需要合成的文本"), value="", lines=20, max_lines=20) text_language = gr.Dropdown( label=i18n("需要合成的文本的语种"), choices=list(dict_language.keys()), value=i18n("中文") ) with gr.Group(): gr.Markdown(value=i18n("推理设置")) with gr.Row(): with gr.Column(): with gr.Row(): batch_size = gr.Slider( minimum=1, maximum=200, step=1, label=i18n("batch_size"), value=20, interactive=True ) sample_steps = gr.Radio( label=i18n("采样步数(仅对V3生效)"), value=32, choices=[4, 8, 16, 32], visible=True ) with gr.Row(): fragment_interval = gr.Slider( minimum=0.01, maximum=1, step=0.01, label=i18n("分段间隔(秒)"), value=0.3, interactive=True ) speed_factor = gr.Slider( minimum=0.6, maximum=1.65, step=0.05, label="语速", value=1.0, interactive=True ) with gr.Row(): top_k = gr.Slider(minimum=1, maximum=100, step=1, label=i18n("top_k"), value=5, interactive=True) top_p = gr.Slider(minimum=0, maximum=1, step=0.05, label=i18n("top_p"), value=1, interactive=True) with gr.Row(): temperature = gr.Slider( minimum=0, maximum=1, step=0.05, label=i18n("temperature"), value=1, interactive=True ) repetition_penalty = gr.Slider( minimum=0, maximum=2, step=0.05, label=i18n("重复惩罚"), value=1.35, interactive=True ) with gr.Column(): with gr.Row(): how_to_cut = gr.Dropdown( label=i18n("怎么切"), choices=[ i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ], value=i18n("凑四句一切"), interactive=True, scale=1, ) super_sampling = gr.Checkbox( label=i18n("音频超采样(仅对V3生效))"), value=False, interactive=True, show_label=True ) with gr.Row(): parallel_infer = gr.Checkbox(label=i18n("并行推理"), value=True, interactive=True, show_label=True) split_bucket = gr.Checkbox( label=i18n("数据分桶(并行推理时会降低一点计算量)"), value=True, interactive=True, show_label=True, ) with gr.Row(): seed = gr.Number(label=i18n("随机种子"), value=-1) keep_random = gr.Checkbox(label=i18n("保持随机"), value=True, interactive=True, show_label=True) output = gr.Audio(label=i18n("输出的语音")) with gr.Row(): inference_button = gr.Button(i18n("合成语音"), variant="primary") stop_infer = gr.Button(i18n("终止合成"), variant="primary") inference_button.click( inference, [ text, text_language, inp_ref, inp_refs, prompt_text, prompt_language, top_k, top_p, temperature, how_to_cut, batch_size, speed_factor, ref_text_free, split_bucket, fragment_interval, seed, keep_random, parallel_infer, repetition_penalty, sample_steps, super_sampling, ], [output, seed], ) stop_infer.click(tts_pipeline.stop, [], []) SoVITS_dropdown.change( change_sovits_weights, [SoVITS_dropdown, prompt_language, text_language], [ prompt_language, text_language, prompt_text, prompt_language, text, text_language, sample_steps, inp_refs, ref_text_free, inference_button, ], ) # GPT_dropdown.change(tts_pipeline.init_t2s_weights, [GPT_dropdown], []) with gr.Group(): gr.Markdown( value=i18n( "文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。" ) ) with gr.Row(): text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="", lines=4) with gr.Column(): _how_to_cut = gr.Radio( label=i18n("怎么切"), choices=[ i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ], value=i18n("凑四句一切"), interactive=True, ) cut_text = gr.Button(i18n("切分"), variant="primary") def to_cut(text_inp, how_to_cut): if len(text_inp.strip()) == 0 or text_inp == []: return "" method = get_method(cut_method[how_to_cut]) return method(text_inp) text_opt = gr.Textbox(label=i18n("切分后文本"), value="", lines=4) cut_text.click(to_cut, [text_inp, _how_to_cut], [text_opt]) gr.Markdown(value=i18n("后续将支持转音素、手工修改音素、语音合成分步执行。")) if __name__ == "__main__": app.queue().launch( # concurrency_count=511, max_size=1022 server_name="0.0.0.0", inbrowser=True, share=is_share, server_port=infer_ttswebui, quiet=True, )