# 这是一个实验性质的实现,旨在探索 stream infer 的可能性。(xiao hai xie zhe wan de) from typing import List from export_torch_script import ExportERes2NetV2, SSLModel, T2SModel, VitsModel, get_raw_t2s_model, init_sv_cn, resamplex, sample, spectrogram_torch import export_torch_script from my_utils import load_audio import torch from torch import LongTensor, Tensor, nn from torch.nn import functional as F import soundfile from inference_webui import get_phones_and_bert import matplotlib.pyplot as plt class StreamT2SModel(nn.Module): def __init__(self, t2s: T2SModel): super(StreamT2SModel, self).__init__() self.t2s = t2s @torch.jit.export def pre_infer( self, prompts: LongTensor, ref_seq: LongTensor, text_seq: LongTensor, ref_bert: torch.Tensor, text_bert: torch.Tensor, top_k: int, ) -> tuple[int, Tensor, Tensor, List[Tensor], List[Tensor]]: bert = torch.cat([ref_bert.T, text_bert.T], 1) all_phoneme_ids = torch.cat([ref_seq, text_seq], 1) bert = bert.unsqueeze(0) x = self.t2s.ar_text_embedding(all_phoneme_ids) x = x + self.t2s.bert_proj(bert.transpose(1, 2)) x: torch.Tensor = self.t2s.ar_text_position(x) # [1,N,512] [1,N] # y, k, v, y_emb, x_example = self.first_stage_decoder(x, prompts) y = prompts # x_example = x[:,:,0] * 0.0 x_len = x.shape[1] x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool) y_emb = self.t2s.ar_audio_embedding(y) y_len: int = y_emb.shape[1] prefix_len = y.shape[1] y_pos = self.t2s.ar_audio_position(y_emb) xy_pos = torch.concat([x, y_pos], dim=1) bsz = x.shape[0] src_len = x_len + y_len x_attn_mask_pad = F.pad( x_attn_mask, (0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y) value=True, ) y_attn_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y) torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1), (x_len, 0), value=False, ) xy_attn_mask = ( torch.concat([x_attn_mask_pad, y_attn_mask], dim=0) .unsqueeze(0) .expand(bsz * self.t2s.num_head, -1, -1) .view(bsz, self.t2s.num_head, src_len, src_len) .to(device=x.device, dtype=torch.bool) ) xy_dec, k_cache, v_cache = self.t2s.t2s_transformer.process_prompt( xy_pos, xy_attn_mask, None ) logits = self.t2s.ar_predict_layer(xy_dec[:, -1]) logits = logits[:, :-1] samples = sample( logits, y, top_k=top_k, top_p=1, repetition_penalty=1.35, temperature=1.0 )[0] y = torch.concat([y, samples], dim=1) y_emb: Tensor = self.t2s.ar_audio_embedding(y[:, -1:]) xy_pos: Tensor = ( y_emb * self.t2s.ar_audio_position.x_scale + self.t2s.ar_audio_position.alpha * self.t2s.ar_audio_position.pe[:, y_len].to( dtype=y_emb.dtype, device=y_emb.device ) ) return y_len, y, xy_pos, k_cache, v_cache @torch.jit.export def decode_next_token( self, idx: int, # 记住从1开始 到1500 top_k: int, y_len: int, y: Tensor, xy_pos: Tensor, k_cache: List[Tensor], v_cache: List[Tensor], ) -> tuple[Tensor, Tensor, int, List[Tensor], List[Tensor]]: # [1, N] [N_layer, N, 1, 512] [N_layer, N, 1, 512] [1, N, 512] [1] [1, N, 512] [1, N] # y, k, v, y_emb, logits, samples = self.stage_decoder(y, k, v, y_emb, x_example) xy_dec, k_cache, v_cache = self.t2s.t2s_transformer.decode_next_token( xy_pos, k_cache, v_cache ) logits = self.t2s.ar_predict_layer(xy_dec[:, -1]) if idx < 11: ###至少预测出10个token不然不给停止(0.4s) logits = logits[:, :-1] samples = sample( logits, y, top_k=top_k, top_p=1, repetition_penalty=1.35, temperature=1.0 )[0] y = torch.concat([y, samples], dim=1) last_token = int(samples[0, 0]) # if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num: # stop = True if torch.argmax(logits, dim=-1)[0] == self.t2s.EOS or samples[0, 0] == self.t2s.EOS: return y[:,:-1], xy_pos, self.t2s.EOS, k_cache, v_cache # if stop: # if y.shape[1] == 0: # y = torch.concat([y, torch.zeros_like(samples)], dim=1) # break y_emb = self.t2s.ar_audio_embedding(y[:, -1:]) xy_pos = ( y_emb * self.t2s.ar_audio_position.x_scale + self.t2s.ar_audio_position.alpha * self.t2s.ar_audio_position.pe[:, y_len + idx].to( dtype=y_emb.dtype, device=y_emb.device ) ) return y, xy_pos, last_token, k_cache, v_cache def forward( self, idx: int, # 记住从1开始 到1500 top_k: int, y_len: int, y: Tensor, xy_pos: Tensor, k_cache: List[Tensor], v_cache: List[Tensor], ): return self.decode_next_token(idx,top_k,y_len,y,xy_pos,k_cache,v_cache) class StepVitsModel(nn.Module): def __init__(self, vits: VitsModel,sv_model:ExportERes2NetV2): super().__init__() self.hps = vits.hps self.vq_model = vits.vq_model self.hann_window = vits.hann_window self.sv = sv_model def ref_handle(self, ref_audio_32k): refer = spectrogram_torch( self.hann_window, ref_audio_32k, self.hps.data.filter_length, self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length, center=False, ) ref_audio_16k = resamplex(ref_audio_32k, 32000, 16000).to(ref_audio_32k.dtype).to(ref_audio_32k.device) sv_emb = self.sv(ref_audio_16k) return refer, sv_emb def extract_latent(self, ssl_content): codes = self.vq_model.extract_latent(ssl_content) return codes[0] def forward(self, pred_semantic, text_seq, refer, sv_emb=None): return self.vq_model( pred_semantic, text_seq, refer, speed=1.0, sv_emb=sv_emb )[0, 0] @torch.jit.script def find_best_audio_offset_fast(reference_audio: Tensor, search_audio: Tensor): ref_len = len(reference_audio) search_len = len(search_audio) if search_len < ref_len: raise ValueError( f"搜索音频长度 ({search_len}) 必须大于等于参考音频长度 ({ref_len})" ) # 使用F.conv1d计算原始互相关 reference_flipped = reference_audio.unsqueeze(0).unsqueeze(0) search_padded = search_audio.unsqueeze(0).unsqueeze(0) # 计算点积 dot_products = F.conv1d(search_padded, reference_flipped).squeeze() if len(dot_products.shape) == 0: dot_products = dot_products.unsqueeze(0) # 计算参考音频的平方和 ref_squared_sum = torch.sum(reference_audio**2) # 计算搜索音频每个位置的平方和(滑动窗口) search_squared = search_audio**2 search_squared_padded = search_squared.unsqueeze(0).unsqueeze(0) ones_kernel = torch.ones( 1, 1, ref_len, dtype=search_audio.dtype, device=search_audio.device ) segment_squared_sums = F.conv1d(search_squared_padded, ones_kernel).squeeze() if len(segment_squared_sums.shape) == 0: segment_squared_sums = segment_squared_sums.unsqueeze(0) # 计算归一化因子 ref_norm = torch.sqrt(ref_squared_sum) segment_norms = torch.sqrt(segment_squared_sums) # 避免除零 epsilon = 1e-8 normalization_factor = ref_norm * segment_norms + epsilon # 归一化互相关 correlation_scores = dot_products / normalization_factor best_offset = torch.argmax(correlation_scores).item() return best_offset, correlation_scores import time def test_stream( gpt_path, vits_path, version, ref_audio_path, ref_text, output_path, device="cpu", is_half=True, ): if export_torch_script.sv_cn_model == None: init_sv_cn(device,is_half) ref_audio = torch.tensor([load_audio(ref_audio_path, 16000)]).float() ssl = SSLModel() print(f"device: {device}") ref_seq_id, ref_bert_T, ref_norm_text = get_phones_and_bert( ref_text, "all_zh", "v2" ) ref_seq = torch.LongTensor([ref_seq_id]).to(device) ref_bert = ref_bert_T.T if is_half: ref_bert = ref_bert.half() ref_bert = ref_bert.to(ref_seq.device) text_seq_id, text_bert_T, norm_text = get_phones_and_bert( "这是一个简单的示例,真没想到这么简单就完成了,真的神奇,接下来我们说说狐狸,可能这就是狐狸吧.它有长长的尾巴,尖尖的耳朵,传说中还有九条尾巴。你觉得狐狸神奇吗?", "auto", "v2" ) text_seq = torch.LongTensor([text_seq_id]).to(device) text_bert = text_bert_T.T if is_half: text_bert = text_bert.half() text_bert = text_bert.to(text_seq.device) ssl_content = ssl(ref_audio) if is_half: ssl_content = ssl_content.half() ssl_content = ssl_content.to(device) sv_model = ExportERes2NetV2(export_torch_script.sv_cn_model) # vits_path = "SoVITS_weights_v2/xw_e8_s216.pth" vits = VitsModel(vits_path, version,is_half=is_half,device=device) vits.eval() # gpt_path = "GPT_weights_v2/xw-e15.ckpt" # dict_s1 = torch.load(gpt_path, map_location=device) dict_s1 = torch.load(gpt_path, weights_only=False) raw_t2s = get_raw_t2s_model(dict_s1).to(device) print("#### get_raw_t2s_model ####") print(raw_t2s.config) if is_half: raw_t2s = raw_t2s.half() t2s_m = T2SModel(raw_t2s) t2s_m.eval() # t2s = torch.jit.script(t2s_m).to(device) t2s = t2s_m print("#### script t2s_m ####") print("vits.hps.data.sampling_rate:", vits.hps.data.sampling_rate) stream_t2s = StreamT2SModel(t2s).to(device) stream_t2s = torch.jit.script(stream_t2s) ref_audio_sr = resamplex(ref_audio, 16000, 32000) if is_half: ref_audio_sr = ref_audio_sr.half() ref_audio_sr = ref_audio_sr.to(device) top_k = 15 codes = vits.vq_model.extract_latent(ssl_content) prompt_semantic = codes[0, 0] prompts = prompt_semantic.unsqueeze(0) audio_16k = resamplex(ref_audio_sr, 32000, 16000).to(ref_audio_sr.dtype) sv_emb = sv_model(audio_16k) print("text_seq",text_seq.shape) refer = spectrogram_torch( vits.hann_window, ref_audio_sr, vits.hps.data.filter_length, vits.hps.data.sampling_rate, vits.hps.data.hop_length, vits.hps.data.win_length, center=False, ) st = time.time() et = time.time() y_len, y, xy_pos, k_cache, v_cache = stream_t2s.pre_infer(prompts, ref_seq, text_seq, ref_bert, text_bert, top_k) idx = 1 last_idx = 0 audios = [] raw_audios = [] last_audio_ret = None offset_index = [] full_audios = [] print("y.shape:", y.shape) cut_id = 0 while True: y, xy_pos, last_token, k_cache, v_cache = stream_t2s(idx, top_k, y_len, y, xy_pos, k_cache, v_cache) # print("y.shape:", y.shape) stop = last_token==t2s.EOS print('idx:',idx , 'y.shape:', y.shape, y.shape[1]-idx) if last_token < 50 and idx-last_idx > (len(audios)+1) * 25 and idx > cut_id: cut_id = idx + 7 print('trigger:',idx, last_idx, y[:,-idx+last_idx:], y[:,-idx+last_idx:].shape) # y = torch.cat([y, y[:,-1:]], dim=1) # idx+=1 if stop : idx -=1 print('stop') print(idx, y[:,-idx+last_idx:]) print(idx,last_idx, y.shape) print(y[:,-idx:-idx+20]) # 玄学这档子事说不清楚 if idx == cut_id or stop: print(f"idx: {idx}, last_idx: {last_idx}, cut_id: {cut_id}, stop: {stop}") audio = vits.vq_model(y[:,-idx:].unsqueeze(0), text_seq, refer, speed=1.0, sv_emb=sv_emb)[0, 0] full_audios.append(audio) if last_idx == 0: last_audio_ret = audio[-1280*8:-1280*8+256] audio = audio[:-1280*8] raw_audios.append(audio) et = time.time() else: if stop: audio_ = audio[last_idx*1280 -1280*8:] raw_audios.append(audio_) i, x = find_best_audio_offset_fast(last_audio_ret, audio_[:1280]) offset_index.append(i) audio = audio_[i:] else: audio_ = audio[last_idx*1280 -1280*8:-1280*8] raw_audios.append(audio_) i, x = find_best_audio_offset_fast(last_audio_ret, audio_[:1280]) offset_index.append(i) last_audio_ret = audio[-1280*8:-1280*8+256] audio = audio_[i:] last_idx = idx # print(f'write {output_path}/out_{audio_index}') # soundfile.write(f"{output_path}/out_{audio_index}.wav", audio.float().detach().cpu().numpy(), 32000) audios.append(audio) # print(idx,'/',1500 , y.shape, y[0,-1].item(), stop) if idx>1500: break if stop: break idx+=1 at = time.time() for (i,a) in enumerate(audios): print(f'write {output_path}/out_{i}') soundfile.write(f"{output_path}/out_{i}.wav", a.float().detach().cpu().numpy(), 32000) print(f"frist token: {et - st:.4f} seconds") print(f"all token: {at - st:.4f} seconds") audio = vits.vq_model(y[:,-idx:].unsqueeze(0), text_seq, refer, speed=1.0, sv_emb=sv_emb)[0, 0] soundfile.write(f"{output_path}/out_final.wav", audio.float().detach().cpu().numpy(), 32000) audio = torch.cat(audios, dim=0) soundfile.write(f"{output_path}/out.wav", audio.float().detach().cpu().numpy(), 32000) audio_raw = torch.cat(raw_audios, dim=0) soundfile.write(f"{output_path}/out.raw.wav", audio_raw.float().detach().cpu().numpy(), 32000) colors = ['red', 'green', 'blue', 'orange', 'purple', 'cyan', 'magenta', 'yellow'] max_duration = full_audios[-1].shape[0] plt.xlim(0, max_duration) last_line = 0 for i,a in enumerate(full_audios): plt.plot((a+2.0*i).float().detach().cpu().numpy(), color=colors[i], alpha=0.5, label=f"Audio {i}") # plt.axvline(x=last_line, color=colors[i], linestyle='--') last_line = a.shape[0]-8*1280 plt.axvline(x=last_line, color=colors[i], linestyle='--') plt.plot((audio-2.0).float().detach().cpu().numpy(), color='black', label='Final Audio') plt.plot((audio_raw-4.0).float().detach().cpu().numpy(), color='cyan', label='Raw Audio') print("offset_index:", offset_index) plt.show() def export_prov2( gpt_path, vits_path, version, ref_audio_path, ref_text, output_path, device="cpu", is_half=True, ): if export_torch_script.sv_cn_model == None: init_sv_cn(device,is_half) ref_audio = torch.tensor([load_audio(ref_audio_path, 16000)]).float() ssl = SSLModel() print(f"device: {device}") ref_seq_id, ref_bert_T, ref_norm_text = get_phones_and_bert( ref_text, "all_zh", "v2" ) ref_seq = torch.LongTensor([ref_seq_id]).to(device) ref_bert = ref_bert_T.T if is_half: ref_bert = ref_bert.half() ref_bert = ref_bert.to(ref_seq.device) text_seq_id, text_bert_T, norm_text = get_phones_and_bert( "这是一个简单的示例,真没想到这么简单就完成了.The King and His Stories.Once there was a king.He likes to write stories, but his stories were not good.", "auto", "v2" ) text_seq = torch.LongTensor([text_seq_id]).to(device) text_bert = text_bert_T.T if is_half: text_bert = text_bert.half() text_bert = text_bert.to(text_seq.device) ssl_content = ssl(ref_audio) if is_half: ssl_content = ssl_content.half() ssl_content = ssl_content.to(device) sv_model = ExportERes2NetV2(export_torch_script.sv_cn_model) # vits_path = "SoVITS_weights_v2/xw_e8_s216.pth" vits = VitsModel(vits_path, version,is_half=is_half,device=device) vits.eval() vits = StepVitsModel(vits, sv_model) # gpt_path = "GPT_weights_v2/xw-e15.ckpt" # dict_s1 = torch.load(gpt_path, map_location=device) dict_s1 = torch.load(gpt_path, weights_only=False) raw_t2s = get_raw_t2s_model(dict_s1).to(device) print("#### get_raw_t2s_model ####") print(raw_t2s.config) if is_half: raw_t2s = raw_t2s.half() t2s_m = T2SModel(raw_t2s) t2s_m.eval() # t2s = torch.jit.script(t2s_m).to(device) t2s = t2s_m print("#### script t2s_m ####") print("vits.hps.data.sampling_rate:", vits.hps.data.sampling_rate) stream_t2s = StreamT2SModel(t2s).to(device) stream_t2s = torch.jit.script(stream_t2s) ref_audio_sr = resamplex(ref_audio, 16000, 32000) if is_half: ref_audio_sr = ref_audio_sr.half() ref_audio_sr = ref_audio_sr.to(device) top_k = 15 prompts = vits.extract_latent(ssl_content) audio_16k = resamplex(ref_audio_sr, 32000, 16000).to(ref_audio_sr.dtype) sv_emb = sv_model(audio_16k) print("text_seq",text_seq.shape) # torch.jit.trace() refer,sv_emb = vits.ref_handle(ref_audio_sr) st = time.time() et = time.time() y_len, y, xy_pos, k_cache, v_cache = stream_t2s.pre_infer(prompts, ref_seq, text_seq, ref_bert, text_bert, top_k) idx = 1 print("y.shape:", y.shape) while True: y, xy_pos, last_token, k_cache, v_cache = stream_t2s(idx, top_k, y_len, y, xy_pos, k_cache, v_cache) # print("y.shape:", y.shape) idx+=1 # print(idx,'/',1500 , y.shape, y[0,-1].item(), stop) if idx>1500: break if last_token == t2s.EOS: break at = time.time() print("EOS:",t2s.EOS) print(f"frist token: {et - st:.4f} seconds") print(f"all token: {at - st:.4f} seconds") print("sv_emb", sv_emb.shape) print("refer",refer.shape) y = y[:,-idx:].unsqueeze(0) print("y", y.shape) audio = vits(y, text_seq, refer, sv_emb) soundfile.write(f"{output_path}/out_final.wav", audio.float().detach().cpu().numpy(), 32000) torch._dynamo.mark_dynamic(ssl_content, 2) torch._dynamo.mark_dynamic(ref_audio_sr, 1) torch._dynamo.mark_dynamic(ref_seq, 1) torch._dynamo.mark_dynamic(text_seq, 1) torch._dynamo.mark_dynamic(ref_bert, 0) torch._dynamo.mark_dynamic(text_bert, 0) torch._dynamo.mark_dynamic(refer, 2) torch._dynamo.mark_dynamic(y, 2) inputs = { "forward": (y, text_seq, refer, sv_emb), "extract_latent": ssl_content, "ref_handle": ref_audio_sr, } stream_t2s.save(f"{output_path}/t2s.pt") torch.jit.trace_module(vits, inputs=inputs, optimize=True).save(f"{output_path}/vits.pt") torch.jit.script(find_best_audio_offset_fast, optimize=True).save(f"{output_path}/find_best_audio_offset_fast.pt") import argparse import os if __name__ == "__main__": parser = argparse.ArgumentParser(description="GPT-SoVITS Command Line Tool") parser.add_argument("--gpt_model", required=True, help="Path to the GPT model file") parser.add_argument( "--sovits_model", required=True, help="Path to the SoVITS model file" ) parser.add_argument( "--ref_audio", required=True, help="Path to the reference audio file" ) parser.add_argument( "--ref_text", required=True, help="Path to the reference text file" ) parser.add_argument( "--output_path", required=True, help="Path to the output directory" ) parser.add_argument("--device", help="Device to use", default="cuda" if torch.cuda.is_available() else "cpu") parser.add_argument("--version", help="version of the model", default="v2Pro") parser.add_argument("--no-half", action="store_true", help = "Do not use half precision for model weights") args = parser.parse_args() if not os.path.exists(args.output_path): os.makedirs(args.output_path) is_half = not args.no_half with torch.no_grad(): export_prov2( gpt_path=args.gpt_model, vits_path=args.sovits_model, version=args.version, ref_audio_path=args.ref_audio, ref_text=args.ref_text, output_path=args.output_path, device=args.device, is_half=is_half, )