# Copyright 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker). All Rights Reserved. # Licensed under the Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """ Res2Net implementation is adapted from https://github.com/wenet-e2e/wespeaker. ERes2Net incorporates both local and global feature fusion techniques to improve the performance. The local feature fusion (LFF) fuses the features within one single residual block to extract the local signal. The global feature fusion (GFF) takes acoustic features of different scales as input to aggregate global signal. """ import torch import math import torch.nn as nn import torch.nn.functional as F import pooling_layers as pooling_layers from fusion import AFF class ReLU(nn.Hardtanh): def __init__(self, inplace=False): super(ReLU, self).__init__(0, 20, inplace) def __repr__(self): inplace_str = 'inplace' if self.inplace else '' return self.__class__.__name__ + ' (' \ + inplace_str + ')' class BasicBlockERes2Net(nn.Module): expansion = 2 def __init__(self, in_planes, planes, stride=1, baseWidth=32, scale=2): super(BasicBlockERes2Net, self).__init__() width = int(math.floor(planes*(baseWidth/64.0))) self.conv1 = nn.Conv2d(in_planes, width*scale, kernel_size=1, stride=stride, bias=False) self.bn1 = nn.BatchNorm2d(width*scale) self.nums = scale convs=[] bns=[] for i in range(self.nums): convs.append(nn.Conv2d(width, width, kernel_size=3, padding=1, bias=False)) bns.append(nn.BatchNorm2d(width)) self.convs = nn.ModuleList(convs) self.bns = nn.ModuleList(bns) self.relu = ReLU(inplace=True) self.conv3 = nn.Conv2d(width*scale, planes*self.expansion, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes*self.expansion) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes)) self.stride = stride self.width = width self.scale = scale def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) spx = torch.split(out,self.width,1) for i in range(self.nums): if i==0: sp = spx[i] else: sp = sp + spx[i] sp = self.convs[i](sp) sp = self.relu(self.bns[i](sp)) if i==0: out = sp else: out = torch.cat((out,sp),1) out = self.conv3(out) out = self.bn3(out) residual = self.shortcut(x) out += residual out = self.relu(out) return out class BasicBlockERes2Net_diff_AFF(nn.Module): expansion = 2 def __init__(self, in_planes, planes, stride=1, baseWidth=32, scale=2): super(BasicBlockERes2Net_diff_AFF, self).__init__() width = int(math.floor(planes*(baseWidth/64.0))) self.conv1 = nn.Conv2d(in_planes, width*scale, kernel_size=1, stride=stride, bias=False) self.bn1 = nn.BatchNorm2d(width*scale) self.nums = scale convs=[] fuse_models=[] bns=[] for i in range(self.nums): convs.append(nn.Conv2d(width, width, kernel_size=3, padding=1, bias=False)) bns.append(nn.BatchNorm2d(width)) for j in range(self.nums - 1): fuse_models.append(AFF(channels=width)) self.convs = nn.ModuleList(convs) self.bns = nn.ModuleList(bns) self.fuse_models = nn.ModuleList(fuse_models) self.relu = ReLU(inplace=True) self.conv3 = nn.Conv2d(width*scale, planes*self.expansion, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes*self.expansion) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes)) self.stride = stride self.width = width self.scale = scale def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) spx = torch.split(out,self.width,1) for i in range(self.nums): if i==0: sp = spx[i] else: sp = self.fuse_models[i-1](sp, spx[i]) sp = self.convs[i](sp) sp = self.relu(self.bns[i](sp)) if i==0: out = sp else: out = torch.cat((out,sp),1) out = self.conv3(out) out = self.bn3(out) residual = self.shortcut(x) out += residual out = self.relu(out) return out class ERes2Net(nn.Module): def __init__(self, block=BasicBlockERes2Net, block_fuse=BasicBlockERes2Net_diff_AFF, num_blocks=[3, 4, 6, 3], m_channels=32, feat_dim=80, embedding_size=192, pooling_func='TSTP', two_emb_layer=False): super(ERes2Net, self).__init__() self.in_planes = m_channels self.feat_dim = feat_dim self.embedding_size = embedding_size self.stats_dim = int(feat_dim / 8) * m_channels * 8 self.two_emb_layer = two_emb_layer self.conv1 = nn.Conv2d(1, m_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(m_channels) self.layer1 = self._make_layer(block, m_channels, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, m_channels * 2, num_blocks[1], stride=2) self.layer3 = self._make_layer(block_fuse, m_channels * 4, num_blocks[2], stride=2) self.layer4 = self._make_layer(block_fuse, m_channels * 8, num_blocks[3], stride=2) # Downsampling module for each layer self.layer1_downsample = nn.Conv2d(m_channels * 2, m_channels * 4, kernel_size=3, stride=2, padding=1, bias=False) self.layer2_downsample = nn.Conv2d(m_channels * 4, m_channels * 8, kernel_size=3, padding=1, stride=2, bias=False) self.layer3_downsample = nn.Conv2d(m_channels * 8, m_channels * 16, kernel_size=3, padding=1, stride=2, bias=False) # Bottom-up fusion module self.fuse_mode12 = AFF(channels=m_channels * 4) self.fuse_mode123 = AFF(channels=m_channels * 8) self.fuse_mode1234 = AFF(channels=m_channels * 16) self.n_stats = 1 if pooling_func == 'TAP' or pooling_func == "TSDP" else 2 self.pool = getattr(pooling_layers, pooling_func)( in_dim=self.stats_dim * block.expansion) self.seg_1 = nn.Linear(self.stats_dim * block.expansion * self.n_stats, embedding_size) if self.two_emb_layer: self.seg_bn_1 = nn.BatchNorm1d(embedding_size, affine=False) self.seg_2 = nn.Linear(embedding_size, embedding_size) else: self.seg_bn_1 = nn.Identity() self.seg_2 = nn.Identity() def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): x = x.permute(0, 2, 1) # (B,T,F) => (B,F,T) x = x.unsqueeze_(1) out = F.relu(self.bn1(self.conv1(x))) out1 = self.layer1(out) out2 = self.layer2(out1) out1_downsample = self.layer1_downsample(out1) fuse_out12 = self.fuse_mode12(out2, out1_downsample) out3 = self.layer3(out2) fuse_out12_downsample = self.layer2_downsample(fuse_out12) fuse_out123 = self.fuse_mode123(out3, fuse_out12_downsample) out4 = self.layer4(out3) fuse_out123_downsample = self.layer3_downsample(fuse_out123) fuse_out1234 = self.fuse_mode1234(out4, fuse_out123_downsample) stats = self.pool(fuse_out1234) embed_a = self.seg_1(stats) if self.two_emb_layer: out = F.relu(embed_a) out = self.seg_bn_1(out) embed_b = self.seg_2(out) return embed_b else: return embed_a def forward3(self, x): x = x.permute(0, 2, 1) # (B,T,F) => (B,F,T) x = x.unsqueeze_(1) out = F.relu(self.bn1(self.conv1(x))) out1 = self.layer1(out) out2 = self.layer2(out1) out1_downsample = self.layer1_downsample(out1) fuse_out12 = self.fuse_mode12(out2, out1_downsample) out3 = self.layer3(out2) fuse_out12_downsample = self.layer2_downsample(fuse_out12) fuse_out123 = self.fuse_mode123(out3, fuse_out12_downsample) out4 = self.layer4(out3) fuse_out123_downsample = self.layer3_downsample(fuse_out123) fuse_out1234 = self.fuse_mode1234(out4, fuse_out123_downsample).flatten(start_dim=1,end_dim=2).mean(-1) return fuse_out1234 if __name__ == '__main__': x = torch.zeros(10, 300, 80) model = ERes2Net(feat_dim=80, embedding_size=192, pooling_func='TSTP') model.eval() out = model(x) print(out.shape) # torch.Size([10, 192]) num_params = sum(param.numel() for param in model.parameters()) print("{} M".format(num_params / 1e6)) # 6.61M